MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2g Unicode version

Theorem zorn2g 8217
Description: Zorn's Lemma of [Monk1] p. 117. This version of zorn2 8220 avoids the Axiom of Choice by assuming that  A is well-orderable. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zorn2g  |-  ( ( A  e.  dom  card  /\  R  Po  A  /\  A. w ( ( w 
C_  A  /\  R  Or  w )  ->  E. x  e.  A  A. z  e.  w  ( z R x  \/  z  =  x ) ) )  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Distinct variable groups:    x, y,
z, w, R    x, A, y, z, w

Proof of Theorem zorn2g
Dummy variables  v  u  g  h  t 
s  r  q  d  k  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4105 . . . . . . . . 9  |-  ( g  =  k  ->  (
g q n  <->  k q
n ) )
21notbid 285 . . . . . . . 8  |-  ( g  =  k  ->  ( -.  g q n  <->  -.  k
q n ) )
32cbvralv 2840 . . . . . . 7  |-  ( A. g  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n  <->  A. k  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  k q n )
4 breq2 4106 . . . . . . . . 9  |-  ( n  =  m  ->  (
k q n  <->  k q
m ) )
54notbid 285 . . . . . . . 8  |-  ( n  =  m  ->  ( -.  k q n  <->  -.  k
q m ) )
65ralbidv 2639 . . . . . . 7  |-  ( n  =  m  ->  ( A. k  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  k q n  <->  A. k  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  k q m ) )
73, 6syl5bb 248 . . . . . 6  |-  ( n  =  m  ->  ( A. g  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n  <->  A. k  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  k q m ) )
87cbvriotav 6400 . . . . 5  |-  ( iota_ n  e.  { v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n )  =  (
iota_ m  e.  { v  e.  A  |  A. q  e.  ran  h  q R v } A. k  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  k q m )
9 rneq 4983 . . . . . . . 8  |-  ( h  =  d  ->  ran  h  =  ran  d )
109raleqdv 2818 . . . . . . 7  |-  ( h  =  d  ->  ( A. q  e.  ran  h  q R v  <->  A. q  e.  ran  d  q R v ) )
1110rabbidv 2856 . . . . . 6  |-  ( h  =  d  ->  { v  e.  A  |  A. q  e.  ran  h  q R v }  =  { v  e.  A  |  A. q  e.  ran  d  q R v } )
1211raleqdv 2818 . . . . . 6  |-  ( h  =  d  ->  ( A. k  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  k q m  <->  A. k  e.  { v  e.  A  |  A. q  e.  ran  d  q R v }  -.  k q m ) )
1311, 12riotaeqbidv 6391 . . . . 5  |-  ( h  =  d  ->  ( iota_ m  e.  { v  e.  A  |  A. q  e.  ran  h  q R v } A. k  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  k q m )  =  ( iota_ m  e. 
{ v  e.  A  |  A. q  e.  ran  d  q R v } A. k  e. 
{ v  e.  A  |  A. q  e.  ran  d  q R v }  -.  k q m ) )
148, 13syl5eq 2402 . . . 4  |-  ( h  =  d  ->  ( iota_ n  e.  { v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n )  =  ( iota_ m  e. 
{ v  e.  A  |  A. q  e.  ran  d  q R v } A. k  e. 
{ v  e.  A  |  A. q  e.  ran  d  q R v }  -.  k q m ) )
1514cbvmptv 4190 . . 3  |-  ( h  e.  _V  |->  ( iota_ n  e.  { v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) )  =  ( d  e.  _V  |->  ( iota_ m  e.  {
v  e.  A  |  A. q  e.  ran  d  q R v } A. k  e. 
{ v  e.  A  |  A. q  e.  ran  d  q R v }  -.  k q m ) )
16 recseq 6473 . . 3  |-  ( ( h  e.  _V  |->  (
iota_ n  e.  { v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) )  =  ( d  e.  _V  |->  ( iota_ m  e.  { v  e.  A  |  A. q  e.  ran  d  q R v } A. k  e.  { v  e.  A  |  A. q  e.  ran  d  q R v }  -.  k q m ) )  -> recs ( ( h  e. 
_V  |->  ( iota_ n  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) ) )  = recs ( ( d  e.  _V  |->  ( iota_ m  e.  { v  e.  A  |  A. q  e.  ran  d  q R v } A. k  e.  { v  e.  A  |  A. q  e.  ran  d  q R v }  -.  k q m ) ) ) )
1715, 16ax-mp 8 . 2  |- recs ( ( h  e.  _V  |->  (
iota_ n  e.  { v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e.  { v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) ) )  = recs (
( d  e.  _V  |->  ( iota_ m  e.  {
v  e.  A  |  A. q  e.  ran  d  q R v } A. k  e. 
{ v  e.  A  |  A. q  e.  ran  d  q R v }  -.  k q m ) ) )
18 breq1 4105 . . . . 5  |-  ( q  =  s  ->  (
q R v  <->  s R
v ) )
1918cbvralv 2840 . . . 4  |-  ( A. q  e.  ran  d  q R v  <->  A. s  e.  ran  d  s R v )
20 breq2 4106 . . . . 5  |-  ( v  =  r  ->  (
s R v  <->  s R
r ) )
2120ralbidv 2639 . . . 4  |-  ( v  =  r  ->  ( A. s  e.  ran  d  s R v  <->  A. s  e.  ran  d  s R r ) )
2219, 21syl5bb 248 . . 3  |-  ( v  =  r  ->  ( A. q  e.  ran  d  q R v  <->  A. s  e.  ran  d  s R r ) )
2322cbvrabv 2863 . 2  |-  { v  e.  A  |  A. q  e.  ran  d  q R v }  =  { r  e.  A  |  A. s  e.  ran  d  s R r }
24 eqid 2358 . 2  |-  { r  e.  A  |  A. s  e.  (recs (
( h  e.  _V  |->  ( iota_ n  e.  {
v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) ) )
" u ) s R r }  =  { r  e.  A  |  A. s  e.  (recs ( ( h  e. 
_V  |->  ( iota_ n  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) ) )
" u ) s R r }
25 eqid 2358 . 2  |-  { r  e.  A  |  A. s  e.  (recs (
( h  e.  _V  |->  ( iota_ n  e.  {
v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) ) )
" t ) s R r }  =  { r  e.  A  |  A. s  e.  (recs ( ( h  e. 
_V  |->  ( iota_ n  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v } A. g  e. 
{ v  e.  A  |  A. q  e.  ran  h  q R v }  -.  g q n ) ) )
" t ) s R r }
2617, 23, 24, 25zorn2lem7 8216 1  |-  ( ( A  e.  dom  card  /\  R  Po  A  /\  A. w ( ( w 
C_  A  /\  R  Or  w )  ->  E. x  e.  A  A. z  e.  w  ( z R x  \/  z  =  x ) ) )  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934   A.wal 1540    = wceq 1642    e. wcel 1710   A.wral 2619   E.wrex 2620   {crab 2623   _Vcvv 2864    C_ wss 3228   class class class wbr 4102    e. cmpt 4156    Po wpo 4391    Or wor 4392   dom cdm 4768   ran crn 4769   "cima 4771   iota_crio 6381  recscrecs 6471   cardccrd 7655
This theorem is referenced by:  zorng  8218  zorn2  8220
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-se 4432  df-we 4433  df-ord 4474  df-on 4475  df-suc 4477  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-isom 5343  df-riota 6388  df-recs 6472  df-en 6949  df-card 7659
  Copyright terms: Public domain W3C validator