MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem6 Unicode version

Theorem zorn2lem6 8365
Description: Lemma for zorn2 8370. (Contributed by NM, 4-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3  |-  F  = recs ( ( f  e. 
_V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u w v ) ) )
zorn2lem.4  |-  C  =  { z  e.  A  |  A. g  e.  ran  f  g R z }
zorn2lem.5  |-  D  =  { z  e.  A  |  A. g  e.  ( F " x ) g R z }
zorn2lem.7  |-  H  =  { z  e.  A  |  A. g  e.  ( F " y ) g R z }
Assertion
Ref Expression
zorn2lem6  |-  ( R  Po  A  ->  (
( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  R  Or  ( F " x
) ) )
Distinct variable groups:    f, g, u, v, w, x, y, z, A    D, f, u, v, y    f, F, g, u, v, x, y, z    R, f, g, u, v, w, x, y, z    v, C    x, H, u, v, f
Allowed substitution hints:    C( x, y, z, w, u, f, g)    D( x, z, w, g)    F( w)    H( y,
z, w, g)

Proof of Theorem zorn2lem6
Dummy variables  a 
b  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zorn2lem.3 . . . . . 6  |-  F  = recs ( ( f  e. 
_V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u w v ) ) )
2 zorn2lem.4 . . . . . 6  |-  C  =  { z  e.  A  |  A. g  e.  ran  f  g R z }
3 zorn2lem.5 . . . . . 6  |-  D  =  { z  e.  A  |  A. g  e.  ( F " x ) g R z }
4 zorn2lem.7 . . . . . 6  |-  H  =  { z  e.  A  |  A. g  e.  ( F " y ) g R z }
51, 2, 3, 4zorn2lem5 8364 . . . . 5  |-  ( ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( F " x
)  C_  A )
6 poss 4492 . . . . 5  |-  ( ( F " x ) 
C_  A  ->  ( R  Po  A  ->  R  Po  ( F "
x ) ) )
75, 6syl 16 . . . 4  |-  ( ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( R  Po  A  ->  R  Po  ( F
" x ) ) )
87com12 29 . . 3  |-  ( R  Po  A  ->  (
( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  R  Po  ( F " x
) ) )
91tfr1 6644 . . . . . . . 8  |-  F  Fn  On
10 fnfun 5528 . . . . . . . 8  |-  ( F  Fn  On  ->  Fun  F )
11 fvelima 5764 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  s  e.  ( F " x
) )  ->  E. b  e.  x  ( F `  b )  =  s )
12 df-rex 2698 . . . . . . . . . . 11  |-  ( E. b  e.  x  ( F `  b )  =  s  <->  E. b
( b  e.  x  /\  ( F `  b
)  =  s ) )
1311, 12sylib 189 . . . . . . . . . 10  |-  ( ( Fun  F  /\  s  e.  ( F " x
) )  ->  E. b
( b  e.  x  /\  ( F `  b
)  =  s ) )
1413ex 424 . . . . . . . . 9  |-  ( Fun 
F  ->  ( s  e.  ( F " x
)  ->  E. b
( b  e.  x  /\  ( F `  b
)  =  s ) ) )
15 fvelima 5764 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  r  e.  ( F " x
) )  ->  E. a  e.  x  ( F `  a )  =  r )
16 df-rex 2698 . . . . . . . . . . 11  |-  ( E. a  e.  x  ( F `  a )  =  r  <->  E. a
( a  e.  x  /\  ( F `  a
)  =  r ) )
1715, 16sylib 189 . . . . . . . . . 10  |-  ( ( Fun  F  /\  r  e.  ( F " x
) )  ->  E. a
( a  e.  x  /\  ( F `  a
)  =  r ) )
1817ex 424 . . . . . . . . 9  |-  ( Fun 
F  ->  ( r  e.  ( F " x
)  ->  E. a
( a  e.  x  /\  ( F `  a
)  =  r ) ) )
1914, 18anim12d 547 . . . . . . . 8  |-  ( Fun 
F  ->  ( (
s  e.  ( F
" x )  /\  r  e.  ( F " x ) )  -> 
( E. b ( b  e.  x  /\  ( F `  b )  =  s )  /\  E. a ( a  e.  x  /\  ( F `
 a )  =  r ) ) ) )
209, 10, 19mp2b 10 . . . . . . 7  |-  ( ( s  e.  ( F
" x )  /\  r  e.  ( F " x ) )  -> 
( E. b ( b  e.  x  /\  ( F `  b )  =  s )  /\  E. a ( a  e.  x  /\  ( F `
 a )  =  r ) ) )
21 an4 798 . . . . . . . . 9  |-  ( ( ( b  e.  x  /\  a  e.  x
)  /\  ( ( F `  b )  =  s  /\  ( F `  a )  =  r ) )  <-> 
( ( b  e.  x  /\  ( F `
 b )  =  s )  /\  (
a  e.  x  /\  ( F `  a )  =  r ) ) )
22212exbii 1593 . . . . . . . 8  |-  ( E. b E. a ( ( b  e.  x  /\  a  e.  x
)  /\  ( ( F `  b )  =  s  /\  ( F `  a )  =  r ) )  <->  E. b E. a ( ( b  e.  x  /\  ( F `  b
)  =  s )  /\  ( a  e.  x  /\  ( F `
 a )  =  r ) ) )
23 eeanv 1937 . . . . . . . 8  |-  ( E. b E. a ( ( b  e.  x  /\  ( F `  b
)  =  s )  /\  ( a  e.  x  /\  ( F `
 a )  =  r ) )  <->  ( E. b ( b  e.  x  /\  ( F `
 b )  =  s )  /\  E. a ( a  e.  x  /\  ( F `
 a )  =  r ) ) )
2422, 23bitri 241 . . . . . . 7  |-  ( E. b E. a ( ( b  e.  x  /\  a  e.  x
)  /\  ( ( F `  b )  =  s  /\  ( F `  a )  =  r ) )  <-> 
( E. b ( b  e.  x  /\  ( F `  b )  =  s )  /\  E. a ( a  e.  x  /\  ( F `
 a )  =  r ) ) )
2520, 24sylibr 204 . . . . . 6  |-  ( ( s  e.  ( F
" x )  /\  r  e.  ( F " x ) )  ->  E. b E. a ( ( b  e.  x  /\  a  e.  x
)  /\  ( ( F `  b )  =  s  /\  ( F `  a )  =  r ) ) )
264neeq1i 2603 . . . . . . . . . . 11  |-  ( H  =/=  (/)  <->  { z  e.  A  |  A. g  e.  ( F " y ) g R z }  =/=  (/) )
2726ralbii 2716 . . . . . . . . . 10  |-  ( A. y  e.  x  H  =/=  (/)  <->  A. y  e.  x  { z  e.  A  |  A. g  e.  ( F " y ) g R z }  =/=  (/) )
28 imaeq2 5185 . . . . . . . . . . . . . . 15  |-  ( y  =  b  ->  ( F " y )  =  ( F " b
) )
2928raleqdv 2897 . . . . . . . . . . . . . 14  |-  ( y  =  b  ->  ( A. g  e.  ( F " y ) g R z  <->  A. g  e.  ( F " b
) g R z ) )
3029rabbidv 2935 . . . . . . . . . . . . 13  |-  ( y  =  b  ->  { z  e.  A  |  A. g  e.  ( F " y ) g R z }  =  {
z  e.  A  |  A. g  e.  ( F " b ) g R z } )
3130neeq1d 2606 . . . . . . . . . . . 12  |-  ( y  =  b  ->  ( { z  e.  A  |  A. g  e.  ( F " y ) g R z }  =/=  (/)  <->  { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/) ) )
3231rspccv 3036 . . . . . . . . . . 11  |-  ( A. y  e.  x  {
z  e.  A  |  A. g  e.  ( F " y ) g R z }  =/=  (/) 
->  ( b  e.  x  ->  { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/) ) )
33 imaeq2 5185 . . . . . . . . . . . . . . 15  |-  ( y  =  a  ->  ( F " y )  =  ( F " a
) )
3433raleqdv 2897 . . . . . . . . . . . . . 14  |-  ( y  =  a  ->  ( A. g  e.  ( F " y ) g R z  <->  A. g  e.  ( F " a
) g R z ) )
3534rabbidv 2935 . . . . . . . . . . . . 13  |-  ( y  =  a  ->  { z  e.  A  |  A. g  e.  ( F " y ) g R z }  =  {
z  e.  A  |  A. g  e.  ( F " a ) g R z } )
3635neeq1d 2606 . . . . . . . . . . . 12  |-  ( y  =  a  ->  ( { z  e.  A  |  A. g  e.  ( F " y ) g R z }  =/=  (/)  <->  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) )
3736rspccv 3036 . . . . . . . . . . 11  |-  ( A. y  e.  x  {
z  e.  A  |  A. g  e.  ( F " y ) g R z }  =/=  (/) 
->  ( a  e.  x  ->  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) )
3832, 37anim12d 547 . . . . . . . . . 10  |-  ( A. y  e.  x  {
z  e.  A  |  A. g  e.  ( F " y ) g R z }  =/=  (/) 
->  ( ( b  e.  x  /\  a  e.  x )  ->  ( { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/)  /\  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) ) )
3927, 38sylbi 188 . . . . . . . . 9  |-  ( A. y  e.  x  H  =/=  (/)  ->  ( (
b  e.  x  /\  a  e.  x )  ->  ( { z  e.  A  |  A. g  e.  ( F " b
) g R z }  =/=  (/)  /\  {
z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) ) )
40 onelon 4593 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  On  /\  b  e.  x )  ->  b  e.  On )
41 onelon 4593 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  On  /\  a  e.  x )  ->  a  e.  On )
4240, 41anim12dan 811 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  ( b  e.  x  /\  a  e.  x
) )  ->  (
b  e.  On  /\  a  e.  On )
)
4342ex 424 . . . . . . . . . . . . . 14  |-  ( x  e.  On  ->  (
( b  e.  x  /\  a  e.  x
)  ->  ( b  e.  On  /\  a  e.  On ) ) )
44 eloni 4578 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  On  ->  Ord  b )
45 eloni 4578 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  On  ->  Ord  a )
46 ordtri3or 4600 . . . . . . . . . . . . . . . . . 18  |-  ( ( Ord  b  /\  Ord  a )  ->  (
b  e.  a  \/  b  =  a  \/  a  e.  b ) )
4744, 45, 46syl2an 464 . . . . . . . . . . . . . . . . 17  |-  ( ( b  e.  On  /\  a  e.  On )  ->  ( b  e.  a  \/  b  =  a  \/  a  e.  b ) )
48 eqid 2430 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =  {
z  e.  A  |  A. g  e.  ( F " a ) g R z }
491, 2, 48zorn2lem2 8361 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( a  e.  On  /\  ( w  We  A  /\  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) )  -> 
( b  e.  a  ->  ( F `  b ) R ( F `  a ) ) )
5049adantll 695 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( b  e.  On  /\  a  e.  On )  /\  ( w  We  A  /\  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) )  ->  ( b  e.  a  ->  ( F `  b ) R ( F `  a ) ) )
51 breq12 4204 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F `  b
)  =  s  /\  ( F `  a )  =  r )  -> 
( ( F `  b ) R ( F `  a )  <-> 
s R r ) )
5251biimpcd 216 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F `  b ) R ( F `  a )  ->  (
( ( F `  b )  =  s  /\  ( F `  a )  =  r )  ->  s R
r ) )
5350, 52syl6 31 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( b  e.  On  /\  a  e.  On )  /\  ( w  We  A  /\  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) )  ->  ( b  e.  a  ->  ( (
( F `  b
)  =  s  /\  ( F `  a )  =  r )  -> 
s R r ) ) )
5453com23 74 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( b  e.  On  /\  a  e.  On )  /\  ( w  We  A  /\  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) )  ->  ( ( ( F `  b )  =  s  /\  ( F `  a )  =  r )  -> 
( b  e.  a  ->  s R r ) ) )
5554adantrrl 705 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  e.  On  /\  a  e.  On )  /\  ( w  We  A  /\  ( { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/) 
/\  { z  e.  A  |  A. g  e.  ( F " a
) g R z }  =/=  (/) ) ) )  ->  ( (
( F `  b
)  =  s  /\  ( F `  a )  =  r )  -> 
( b  e.  a  ->  s R r ) ) )
5655imp 419 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  On  /\  a  e.  On )  /\  (
w  We  A  /\  ( { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/)  /\  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) ) )  /\  ( ( F `  b )  =  s  /\  ( F `  a )  =  r ) )  ->  ( b  e.  a  ->  s R
r ) )
57 fveq2 5714 . . . . . . . . . . . . . . . . . . . 20  |-  ( b  =  a  ->  ( F `  b )  =  ( F `  a ) )
58 eqeq12 2442 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F `  b
)  =  s  /\  ( F `  a )  =  r )  -> 
( ( F `  b )  =  ( F `  a )  <-> 
s  =  r ) )
5957, 58syl5ib 211 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F `  b
)  =  s  /\  ( F `  a )  =  r )  -> 
( b  =  a  ->  s  =  r ) )
6059adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  On  /\  a  e.  On )  /\  (
w  We  A  /\  ( { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/)  /\  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) ) )  /\  ( ( F `  b )  =  s  /\  ( F `  a )  =  r ) )  ->  ( b  =  a  ->  s  =  r ) )
61 eqid 2430 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =  {
z  e.  A  |  A. g  e.  ( F " b ) g R z }
621, 2, 61zorn2lem2 8361 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( b  e.  On  /\  ( w  We  A  /\  { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/) ) )  -> 
( a  e.  b  ->  ( F `  a ) R ( F `  b ) ) )
6362adantlr 696 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( b  e.  On  /\  a  e.  On )  /\  ( w  We  A  /\  { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/) ) )  ->  ( a  e.  b  ->  ( F `  a ) R ( F `  b ) ) )
64 breq12 4204 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( F `  a
)  =  r  /\  ( F `  b )  =  s )  -> 
( ( F `  a ) R ( F `  b )  <-> 
r R s ) )
6564ancoms 440 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F `  b
)  =  s  /\  ( F `  a )  =  r )  -> 
( ( F `  a ) R ( F `  b )  <-> 
r R s ) )
6665biimpcd 216 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F `  a ) R ( F `  b )  ->  (
( ( F `  b )  =  s  /\  ( F `  a )  =  r )  ->  r R
s ) )
6763, 66syl6 31 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( b  e.  On  /\  a  e.  On )  /\  ( w  We  A  /\  { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/) ) )  ->  ( a  e.  b  ->  ( (
( F `  b
)  =  s  /\  ( F `  a )  =  r )  -> 
r R s ) ) )
6867com23 74 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( b  e.  On  /\  a  e.  On )  /\  ( w  We  A  /\  { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/) ) )  ->  ( ( ( F `  b )  =  s  /\  ( F `  a )  =  r )  -> 
( a  e.  b  ->  r R s ) ) )
6968adantrrr 706 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  e.  On  /\  a  e.  On )  /\  ( w  We  A  /\  ( { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/) 
/\  { z  e.  A  |  A. g  e.  ( F " a
) g R z }  =/=  (/) ) ) )  ->  ( (
( F `  b
)  =  s  /\  ( F `  a )  =  r )  -> 
( a  e.  b  ->  r R s ) ) )
7069imp 419 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  On  /\  a  e.  On )  /\  (
w  We  A  /\  ( { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/)  /\  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) ) )  /\  ( ( F `  b )  =  s  /\  ( F `  a )  =  r ) )  ->  ( a  e.  b  ->  r R
s ) )
7156, 60, 703orim123d 1262 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  On  /\  a  e.  On )  /\  (
w  We  A  /\  ( { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/)  /\  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) ) )  /\  ( ( F `  b )  =  s  /\  ( F `  a )  =  r ) )  ->  ( ( b  e.  a  \/  b  =  a  \/  a  e.  b )  ->  (
s R r  \/  s  =  r  \/  r R s ) ) )
7247, 71syl5 30 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( b  e.  On  /\  a  e.  On )  /\  (
w  We  A  /\  ( { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/)  /\  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) ) )  /\  ( ( F `  b )  =  s  /\  ( F `  a )  =  r ) )  ->  ( ( b  e.  On  /\  a  e.  On )  ->  (
s R r  \/  s  =  r  \/  r R s ) ) )
7372exp31 588 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  On  /\  a  e.  On )  ->  ( ( w  We  A  /\  ( { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/) 
/\  { z  e.  A  |  A. g  e.  ( F " a
) g R z }  =/=  (/) ) )  ->  ( ( ( F `  b )  =  s  /\  ( F `  a )  =  r )  -> 
( ( b  e.  On  /\  a  e.  On )  ->  (
s R r  \/  s  =  r  \/  r R s ) ) ) ) )
7473com4r 82 . . . . . . . . . . . . . 14  |-  ( ( b  e.  On  /\  a  e.  On )  ->  ( ( b  e.  On  /\  a  e.  On )  ->  (
( w  We  A  /\  ( { z  e.  A  |  A. g  e.  ( F " b
) g R z }  =/=  (/)  /\  {
z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) )  ->  (
( ( F `  b )  =  s  /\  ( F `  a )  =  r )  ->  ( s R r  \/  s  =  r  \/  r R s ) ) ) ) )
7543, 43, 74syl6c 62 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  (
( b  e.  x  /\  a  e.  x
)  ->  ( (
w  We  A  /\  ( { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/)  /\  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) )  ->  ( ( ( F `  b )  =  s  /\  ( F `  a )  =  r )  -> 
( s R r  \/  s  =  r  \/  r R s ) ) ) ) )
7675exp4a 590 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  (
( b  e.  x  /\  a  e.  x
)  ->  ( w  We  A  ->  ( ( { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/)  /\  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) )  -> 
( ( ( F `
 b )  =  s  /\  ( F `
 a )  =  r )  ->  (
s R r  \/  s  =  r  \/  r R s ) ) ) ) ) )
7776com3r 75 . . . . . . . . . . 11  |-  ( w  We  A  ->  (
x  e.  On  ->  ( ( b  e.  x  /\  a  e.  x
)  ->  ( ( { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/)  /\  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) )  -> 
( ( ( F `
 b )  =  s  /\  ( F `
 a )  =  r )  ->  (
s R r  \/  s  =  r  \/  r R s ) ) ) ) ) )
7877imp 419 . . . . . . . . . 10  |-  ( ( w  We  A  /\  x  e.  On )  ->  ( ( b  e.  x  /\  a  e.  x )  ->  (
( { z  e.  A  |  A. g  e.  ( F " b
) g R z }  =/=  (/)  /\  {
z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) )  ->  ( (
( F `  b
)  =  s  /\  ( F `  a )  =  r )  -> 
( s R r  \/  s  =  r  \/  r R s ) ) ) ) )
7978a2d 24 . . . . . . . . 9  |-  ( ( w  We  A  /\  x  e.  On )  ->  ( ( ( b  e.  x  /\  a  e.  x )  ->  ( { z  e.  A  |  A. g  e.  ( F " b ) g R z }  =/=  (/)  /\  { z  e.  A  |  A. g  e.  ( F " a ) g R z }  =/=  (/) ) )  ->  ( ( b  e.  x  /\  a  e.  x )  ->  (
( ( F `  b )  =  s  /\  ( F `  a )  =  r )  ->  ( s R r  \/  s  =  r  \/  r R s ) ) ) ) )
8039, 79syl5 30 . . . . . . . 8  |-  ( ( w  We  A  /\  x  e.  On )  ->  ( A. y  e.  x  H  =/=  (/)  ->  (
( b  e.  x  /\  a  e.  x
)  ->  ( (
( F `  b
)  =  s  /\  ( F `  a )  =  r )  -> 
( s R r  \/  s  =  r  \/  r R s ) ) ) ) )
8180imp4b 574 . . . . . . 7  |-  ( ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( ( ( b  e.  x  /\  a  e.  x )  /\  (
( F `  b
)  =  s  /\  ( F `  a )  =  r ) )  ->  ( s R r  \/  s  =  r  \/  r R s ) ) )
8281exlimdvv 1647 . . . . . 6  |-  ( ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( E. b E. a ( ( b  e.  x  /\  a  e.  x )  /\  (
( F `  b
)  =  s  /\  ( F `  a )  =  r ) )  ->  ( s R r  \/  s  =  r  \/  r R s ) ) )
8325, 82syl5 30 . . . . 5  |-  ( ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( ( s  e.  ( F " x
)  /\  r  e.  ( F " x ) )  ->  ( s R r  \/  s  =  r  \/  r R s ) ) )
8483ralrimivv 2784 . . . 4  |-  ( ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  A. s  e.  ( F " x ) A. r  e.  ( F " x ) ( s R r  \/  s  =  r  \/  r R s ) )
8584a1i 11 . . 3  |-  ( R  Po  A  ->  (
( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  A. s  e.  ( F " x
) A. r  e.  ( F " x
) ( s R r  \/  s  =  r  \/  r R s ) ) )
868, 85jcad 520 . 2  |-  ( R  Po  A  ->  (
( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  ( R  Po  ( F " x )  /\  A. s  e.  ( F " x ) A. r  e.  ( F " x
) ( s R r  \/  s  =  r  \/  r R s ) ) ) )
87 df-so 4491 . 2  |-  ( R  Or  ( F "
x )  <->  ( R  Po  ( F " x
)  /\  A. s  e.  ( F " x
) A. r  e.  ( F " x
) ( s R r  \/  s  =  r  \/  r R s ) ) )
8886, 87syl6ibr 219 1  |-  ( R  Po  A  ->  (
( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  R  Or  ( F " x
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2593   A.wral 2692   E.wrex 2693   {crab 2696   _Vcvv 2943    C_ wss 3307   (/)c0 3615   class class class wbr 4199    e. cmpt 4253    Po wpo 4488    Or wor 4489    We wwe 4527   Ord word 4567   Oncon0 4568   ran crn 4865   "cima 4867   Fun wfun 5434    Fn wfn 5435   ` cfv 5440   iota_crio 6528  recscrecs 6618
This theorem is referenced by:  zorn2lem7  8366
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-suc 4574  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-riota 6535  df-recs 6619
  Copyright terms: Public domain W3C validator