MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem7 Structured version   Unicode version

Theorem zorn2lem7 8383
Description: Lemma for zorn2 8387. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3  |-  F  = recs ( ( f  e. 
_V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u w v ) ) )
zorn2lem.4  |-  C  =  { z  e.  A  |  A. g  e.  ran  f  g R z }
zorn2lem.5  |-  D  =  { z  e.  A  |  A. g  e.  ( F " x ) g R z }
zorn2lem.7  |-  H  =  { z  e.  A  |  A. g  e.  ( F " y ) g R z }
Assertion
Ref Expression
zorn2lem7  |-  ( ( A  e.  dom  card  /\  R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  E. a  e.  A  A. b  e.  A  -.  a R b )
Distinct variable groups:    a, b,
f, g, r, s, u, v, w, x, y, z, A    D, a, b, f, u, v, y    F, a, b, f, g, r, s, u, v, x, y, z    R, a, b, f, g, r, s, u, v, w, x, y, z   
v, C    x, H, u, v, f, s, r, a, b
Allowed substitution hints:    C( x, y, z, w, u, f, g, s, r, a, b)    D( x, z, w, g, s, r)    F( w)    H( y, z, w, g)

Proof of Theorem zorn2lem7
StepHypRef Expression
1 ween 7917 . . 3  |-  ( A  e.  dom  card  <->  E. w  w  We  A )
2 zorn2lem.3 . . . . . . . . 9  |-  F  = recs ( ( f  e. 
_V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u w v ) ) )
3 zorn2lem.4 . . . . . . . . 9  |-  C  =  { z  e.  A  |  A. g  e.  ran  f  g R z }
4 zorn2lem.5 . . . . . . . . 9  |-  D  =  { z  e.  A  |  A. g  e.  ( F " x ) g R z }
52, 3, 4zorn2lem4 8380 . . . . . . . 8  |-  ( ( R  Po  A  /\  w  We  A )  ->  E. x  e.  On  D  =  (/) )
6 imaeq2 5200 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( F " x )  =  ( F " y
) )
76raleqdv 2911 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( A. g  e.  ( F " x ) g R z  <->  A. g  e.  ( F " y
) g R z ) )
87rabbidv 2949 . . . . . . . . . . . 12  |-  ( x  =  y  ->  { z  e.  A  |  A. g  e.  ( F " x ) g R z }  =  {
z  e.  A  |  A. g  e.  ( F " y ) g R z } )
9 zorn2lem.7 . . . . . . . . . . . 12  |-  H  =  { z  e.  A  |  A. g  e.  ( F " y ) g R z }
108, 4, 93eqtr4g 2494 . . . . . . . . . . 11  |-  ( x  =  y  ->  D  =  H )
1110eqeq1d 2445 . . . . . . . . . 10  |-  ( x  =  y  ->  ( D  =  (/)  <->  H  =  (/) ) )
1211onminex 4788 . . . . . . . . 9  |-  ( E. x  e.  On  D  =  (/)  ->  E. x  e.  On  ( D  =  (/)  /\  A. y  e.  x  -.  H  =  (/) ) )
13 df-ne 2602 . . . . . . . . . . . 12  |-  ( H  =/=  (/)  <->  -.  H  =  (/) )
1413ralbii 2730 . . . . . . . . . . 11  |-  ( A. y  e.  x  H  =/=  (/)  <->  A. y  e.  x  -.  H  =  (/) )
1514anbi2i 677 . . . . . . . . . 10  |-  ( ( D  =  (/)  /\  A. y  e.  x  H  =/=  (/) )  <->  ( D  =  (/)  /\  A. y  e.  x  -.  H  =  (/) ) )
1615rexbii 2731 . . . . . . . . 9  |-  ( E. x  e.  On  ( D  =  (/)  /\  A. y  e.  x  H  =/=  (/) )  <->  E. x  e.  On  ( D  =  (/)  /\  A. y  e.  x  -.  H  =  (/) ) )
1712, 16sylibr 205 . . . . . . . 8  |-  ( E. x  e.  On  D  =  (/)  ->  E. x  e.  On  ( D  =  (/)  /\  A. y  e.  x  H  =/=  (/) ) )
182, 3, 4, 9zorn2lem5 8381 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( F " x
)  C_  A )
1918a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( R  Po  A  ->  (
( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  ( F " x )  C_  A ) )
202, 3, 4, 9zorn2lem6 8382 . . . . . . . . . . . . . . . . . . 19  |-  ( R  Po  A  ->  (
( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  R  Or  ( F " x
) ) )
2119, 20jcad 521 . . . . . . . . . . . . . . . . . 18  |-  ( R  Po  A  ->  (
( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  (
( F " x
)  C_  A  /\  R  Or  ( F " x ) ) ) )
222tfr1 6659 . . . . . . . . . . . . . . . . . . . 20  |-  F  Fn  On
23 fnfun 5543 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  Fn  On  ->  Fun  F )
24 vex 2960 . . . . . . . . . . . . . . . . . . . . 21  |-  x  e. 
_V
2524funimaex 5532 . . . . . . . . . . . . . . . . . . . 20  |-  ( Fun 
F  ->  ( F " x )  e.  _V )
2622, 23, 25mp2b 10 . . . . . . . . . . . . . . . . . . 19  |-  ( F
" x )  e. 
_V
27 sseq1 3370 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  =  ( F "
x )  ->  (
s  C_  A  <->  ( F " x )  C_  A
) )
28 soeq2 4524 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  =  ( F "
x )  ->  ( R  Or  s  <->  R  Or  ( F " x ) ) )
2927, 28anbi12d 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  =  ( F "
x )  ->  (
( s  C_  A  /\  R  Or  s
)  <->  ( ( F
" x )  C_  A  /\  R  Or  ( F " x ) ) ) )
30 raleq 2905 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  =  ( F "
x )  ->  ( A. r  e.  s 
( r R a  \/  r  =  a )  <->  A. r  e.  ( F " x ) ( r R a  \/  r  =  a ) ) )
3130rexbidv 2727 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  =  ( F "
x )  ->  ( E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a )  <->  E. a  e.  A  A. r  e.  ( F " x ) ( r R a  \/  r  =  a ) ) )
3229, 31imbi12d 313 . . . . . . . . . . . . . . . . . . 19  |-  ( s  =  ( F "
x )  ->  (
( ( s  C_  A  /\  R  Or  s
)  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) )  <-> 
( ( ( F
" x )  C_  A  /\  R  Or  ( F " x ) )  ->  E. a  e.  A  A. r  e.  ( F " x ) ( r R a  \/  r  =  a ) ) ) )
3326, 32spcv 3043 . . . . . . . . . . . . . . . . . 18  |-  ( A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) )  ->  ( ( ( F " x ) 
C_  A  /\  R  Or  ( F " x
) )  ->  E. a  e.  A  A. r  e.  ( F " x
) ( r R a  \/  r  =  a ) ) )
3421, 33sylan9 640 . . . . . . . . . . . . . . . . 17  |-  ( ( R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  ( (
( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  E. a  e.  A  A. r  e.  ( F " x ) ( r R a  \/  r  =  a ) ) )
3534adantld 455 . . . . . . . . . . . . . . . 16  |-  ( ( R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  ( ( D  =  (/)  /\  (
( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  ->  E. a  e.  A  A. r  e.  ( F " x ) ( r R a  \/  r  =  a ) ) )
3635imp 420 . . . . . . . . . . . . . . 15  |-  ( ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  /\  ( D  =  (/)  /\  (
( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  E. a  e.  A  A. r  e.  ( F " x
) ( r R a  \/  r  =  a ) )
37 noel 3633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  -.  b  e.  (/)
3818sseld 3348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( r  e.  ( F " x )  ->  r  e.  A
) )
39 3anass 941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  |-  ( ( r  e.  A  /\  a  e.  A  /\  b  e.  A )  <->  ( r  e.  A  /\  ( a  e.  A  /\  b  e.  A
) ) )
40 potr 4516 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  |-  ( ( R  Po  A  /\  ( r  e.  A  /\  a  e.  A  /\  b  e.  A
) )  ->  (
( r R a  /\  a R b )  ->  r R
b ) )
4139, 40sylan2br 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  |-  ( ( R  Po  A  /\  ( r  e.  A  /\  ( a  e.  A  /\  b  e.  A
) ) )  -> 
( ( r R a  /\  a R b )  ->  r R b ) )
4241exp3acom23 1382 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  |-  ( ( R  Po  A  /\  ( r  e.  A  /\  ( a  e.  A  /\  b  e.  A
) ) )  -> 
( a R b  ->  ( r R a  ->  r R
b ) ) )
4342imp 420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( ( ( R  Po  A  /\  ( r  e.  A  /\  ( a  e.  A  /\  b  e.  A
) ) )  /\  a R b )  -> 
( r R a  ->  r R b ) )
44 breq1 4216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  |-  ( r  =  a  ->  (
r R b  <->  a R
b ) )
4544biimprcd 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  |-  ( a R b  ->  (
r  =  a  -> 
r R b ) )
4645adantl 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( ( ( R  Po  A  /\  ( r  e.  A  /\  ( a  e.  A  /\  b  e.  A
) ) )  /\  a R b )  -> 
( r  =  a  ->  r R b ) )
4743, 46jaod 371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( ( ( R  Po  A  /\  ( r  e.  A  /\  ( a  e.  A  /\  b  e.  A
) ) )  /\  a R b )  -> 
( ( r R a  \/  r  =  a )  ->  r R b ) )
4847exp42 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( R  Po  A  ->  (
r  e.  A  -> 
( ( a  e.  A  /\  b  e.  A )  ->  (
a R b  -> 
( ( r R a  \/  r  =  a )  ->  r R b ) ) ) ) )
4938, 48sylan9r 641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( r  e.  ( F " x )  ->  ( ( a  e.  A  /\  b  e.  A )  ->  (
a R b  -> 
( ( r R a  \/  r  =  a )  ->  r R b ) ) ) ) )
5049com24 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( a R b  ->  ( ( a  e.  A  /\  b  e.  A )  ->  (
r  e.  ( F
" x )  -> 
( ( r R a  \/  r  =  a )  ->  r R b ) ) ) ) )
5150com23 75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  (
a R b  -> 
( r  e.  ( F " x )  ->  ( ( r R a  \/  r  =  a )  -> 
r R b ) ) ) ) )
5251imp31 423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) )  /\  a R b )  -> 
( r  e.  ( F " x )  ->  ( ( r R a  \/  r  =  a )  -> 
r R b ) ) )
5352a2d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) )  /\  a R b )  -> 
( ( r  e.  ( F " x
)  ->  ( r R a  \/  r  =  a ) )  ->  ( r  e.  ( F " x
)  ->  r R
b ) ) )
5453ralimdv2 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) )  /\  a R b )  -> 
( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  A. r  e.  ( F " x
) r R b ) )
55 breq1 4216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( r  =  g  ->  (
r R b  <->  g R
b ) )
5655cbvralv 2933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( A. r  e.  ( F " x ) r R b  <->  A. g  e.  ( F " x ) g R b )
57 breq2 4217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( z  =  b  ->  (
g R z  <->  g R
b ) )
5857ralbidv 2726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( z  =  b  ->  ( A. g  e.  ( F " x ) g R z  <->  A. g  e.  ( F " x
) g R b ) )
5958elrab 3093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( b  e.  { z  e.  A  |  A. g  e.  ( F " x
) g R z }  <->  ( b  e.  A  /\  A. g  e.  ( F " x
) g R b ) )
604eqeq1i 2444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( D  =  (/)  <->  { z  e.  A  |  A. g  e.  ( F " x ) g R z }  =  (/) )
61 eleq2 2498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( { z  e.  A  |  A. g  e.  ( F " x ) g R z }  =  (/) 
->  ( b  e.  {
z  e.  A  |  A. g  e.  ( F " x ) g R z }  <->  b  e.  (/) ) )
6260, 61sylbi 189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( D  =  (/)  ->  ( b  e.  { z  e.  A  |  A. g  e.  ( F " x
) g R z }  <->  b  e.  (/) ) )
6359, 62syl5bbr 252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( D  =  (/)  ->  ( ( b  e.  A  /\  A. g  e.  ( F
" x ) g R b )  <->  b  e.  (/) ) )
6463biimpd 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( D  =  (/)  ->  ( ( b  e.  A  /\  A. g  e.  ( F
" x ) g R b )  -> 
b  e.  (/) ) )
6564expdimp 428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( D  =  (/)  /\  b  e.  A )  ->  ( A. g  e.  ( F " x ) g R b  ->  b  e.  (/) ) )
6656, 65syl5bi 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( D  =  (/)  /\  b  e.  A )  ->  ( A. r  e.  ( F " x ) r R b  ->  b  e.  (/) ) )
6754, 66sylan9r 641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( D  =  (/)  /\  b  e.  A )  /\  ( ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) )  /\  a R b ) )  ->  ( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  b  e.  (/) ) )
6867exp32 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( D  =  (/)  /\  b  e.  A )  ->  (
( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) )  ->  (
a R b  -> 
( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  b  e.  (/) ) ) ) )
6968com34 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( D  =  (/)  /\  b  e.  A )  ->  (
( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) )  ->  ( A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  ->  ( a R b  ->  b  e.  (/) ) ) ) )
7069imp31 423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( D  =  (/)  /\  b  e.  A
)  /\  ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) ) )  /\  A. r  e.  ( F
" x ) ( r R a  \/  r  =  a ) )  ->  ( a R b  ->  b  e.  (/) ) )
7137, 70mtoi 172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( D  =  (/)  /\  b  e.  A
)  /\  ( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  /\  ( a  e.  A  /\  b  e.  A
) ) )  /\  A. r  e.  ( F
" x ) ( r R a  \/  r  =  a ) )  ->  -.  a R b )
7271exp42 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( D  =  (/)  /\  b  e.  A )  ->  (
( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  ( A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  ->  -.  a R
b ) ) ) )
7372exp4a 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( D  =  (/)  /\  b  e.  A )  ->  (
( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( a  e.  A  ->  ( b  e.  A  ->  ( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  -.  a R b ) ) ) ) )
7473com34 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( D  =  (/)  /\  b  e.  A )  ->  (
( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( b  e.  A  ->  ( a  e.  A  ->  ( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  -.  a R b ) ) ) ) )
7574ex 425 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( D  =  (/)  ->  ( b  e.  A  ->  (
( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( b  e.  A  ->  ( a  e.  A  ->  ( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  -.  a R b ) ) ) ) ) )
7675com4r 83 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( b  e.  A  ->  ( D  =  (/)  ->  (
b  e.  A  -> 
( ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( a  e.  A  ->  ( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  -.  a R b ) ) ) ) ) )
7776pm2.43a 48 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( b  e.  A  ->  ( D  =  (/)  ->  (
( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) )  -> 
( a  e.  A  ->  ( A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  -.  a R b ) ) ) ) )
7877imp3a 422 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  e.  A  ->  (
( D  =  (/)  /\  ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  ( a  e.  A  ->  ( A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  ->  -.  a R b ) ) ) )
7978com4l 81 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( D  =  (/)  /\  ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  ( a  e.  A  ->  ( A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  -> 
( b  e.  A  ->  -.  a R b ) ) ) )
8079imp3a 422 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( D  =  (/)  /\  ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  ( ( a  e.  A  /\  A. r  e.  ( F " x ) ( r R a  \/  r  =  a ) )  ->  ( b  e.  A  ->  -.  a R b ) ) )
8180ralrimdv 2796 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( D  =  (/)  /\  ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  ( ( a  e.  A  /\  A. r  e.  ( F " x ) ( r R a  \/  r  =  a ) )  ->  A. b  e.  A  -.  a R b ) )
8281exp3a 427 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  =  (/)  /\  ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  ( a  e.  A  ->  ( A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  ->  A. b  e.  A  -.  a R b ) ) )
8382reximdvai 2817 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  =  (/)  /\  ( R  Po  A  /\  ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  ( E. a  e.  A  A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
8483exp32 590 . . . . . . . . . . . . . . . . . 18  |-  ( D  =  (/)  ->  ( R  Po  A  ->  (
( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  ( E. a  e.  A  A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) ) )
8584com12 30 . . . . . . . . . . . . . . . . 17  |-  ( R  Po  A  ->  ( D  =  (/)  ->  (
( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  ->  ( E. a  e.  A  A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) ) )
8685adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  ( D  =  (/)  ->  ( (
( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( E. a  e.  A  A. r  e.  ( F " x
) ( r R a  \/  r  =  a )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) ) )
8786imp32 424 . . . . . . . . . . . . . . 15  |-  ( ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  /\  ( D  =  (/)  /\  (
( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  ( E. a  e.  A  A. r  e.  ( F " x ) ( r R a  \/  r  =  a )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
8836, 87mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  /\  ( D  =  (/)  /\  (
( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) ) ) )  ->  E. a  e.  A  A. b  e.  A  -.  a R b )
8988exp45 599 . . . . . . . . . . . . 13  |-  ( ( R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  ( D  =  (/)  ->  ( (
w  We  A  /\  x  e.  On )  ->  ( A. y  e.  x  H  =/=  (/)  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) ) )
9089com23 75 . . . . . . . . . . . 12  |-  ( ( R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  ( (
w  We  A  /\  x  e.  On )  ->  ( D  =  (/)  ->  ( A. y  e.  x  H  =/=  (/)  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) ) )
9190expdimp 428 . . . . . . . . . . 11  |-  ( ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  ( x  e.  On  ->  ( D  =  (/)  ->  ( A. y  e.  x  H  =/=  (/)  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) ) )
9291imp4a 574 . . . . . . . . . 10  |-  ( ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  ( x  e.  On  ->  ( ( D  =  (/)  /\  A. y  e.  x  H  =/=  (/) )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) )
9392com3l 78 . . . . . . . . 9  |-  ( x  e.  On  ->  (
( D  =  (/)  /\ 
A. y  e.  x  H  =/=  (/) )  ->  (
( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s
)  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) ) )
9493rexlimiv 2825 . . . . . . . 8  |-  ( E. x  e.  On  ( D  =  (/)  /\  A. y  e.  x  H  =/=  (/) )  ->  (
( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s
)  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
955, 17, 943syl 19 . . . . . . 7  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( ( ( R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
9695adantlr 697 . . . . . 6  |-  ( ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  ( ( ( R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
9796pm2.43i 46 . . . . 5  |-  ( ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  /\  w  We  A )  ->  E. a  e.  A  A. b  e.  A  -.  a R b )
9897expcom 426 . . . 4  |-  ( w  We  A  ->  (
( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
9998exlimiv 1645 . . 3  |-  ( E. w  w  We  A  ->  ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s
)  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
1001, 99sylbi 189 . 2  |-  ( A  e.  dom  card  ->  ( ( R  Po  A  /\  A. s ( ( s  C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s 
( r R a  \/  r  =  a ) ) )  ->  E. a  e.  A  A. b  e.  A  -.  a R b ) )
1011003impib 1152 1  |-  ( ( A  e.  dom  card  /\  R  Po  A  /\  A. s ( ( s 
C_  A  /\  R  Or  s )  ->  E. a  e.  A  A. r  e.  s  ( r R a  \/  r  =  a ) ) )  ->  E. a  e.  A  A. b  e.  A  -.  a R b )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937   A.wal 1550   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2600   A.wral 2706   E.wrex 2707   {crab 2710   _Vcvv 2957    C_ wss 3321   (/)c0 3629   class class class wbr 4213    e. cmpt 4267    Po wpo 4502    Or wor 4503    We wwe 4541   Oncon0 4582   dom cdm 4879   ran crn 4880   "cima 4882   Fun wfun 5449    Fn wfn 5450   iota_crio 6543  recscrecs 6633   cardccrd 7823
This theorem is referenced by:  zorn2g  8384
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-se 4543  df-we 4544  df-ord 4585  df-on 4586  df-suc 4588  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-isom 5464  df-riota 6550  df-recs 6634  df-en 7111  df-card 7827
  Copyright terms: Public domain W3C validator