MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorng Unicode version

Theorem zorng 8147
Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of [Enderton] p. 151. This version of zorn 8150 avoids the Axiom of Choice by assuming that  A is well-orderable. (Contributed by NM, 12-Aug-2004.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zorng  |-  ( ( A  e.  dom  card  /\ 
A. z ( ( z  C_  A  /\ [ C.] 
Or  z )  ->  U. z  e.  A
) )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
Distinct variable group:    x, y, z, A

Proof of Theorem zorng
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 risset 2603 . . . . . 6  |-  ( U. z  e.  A  <->  E. x  e.  A  x  =  U. z )
2 eqimss2 3244 . . . . . . . . 9  |-  ( x  =  U. z  ->  U. z  C_  x )
3 unissb 3873 . . . . . . . . 9  |-  ( U. z  C_  x  <->  A. u  e.  z  u  C_  x
)
42, 3sylib 188 . . . . . . . 8  |-  ( x  =  U. z  ->  A. u  e.  z  u  C_  x )
5 vex 2804 . . . . . . . . . . . 12  |-  x  e. 
_V
65brrpss 6296 . . . . . . . . . . 11  |-  ( u [
C.]  x  <->  u  C.  x )
76orbi1i 506 . . . . . . . . . 10  |-  ( ( u [ C.]  x  \/  u  =  x )  <->  ( u  C.  x  \/  u  =  x ) )
8 sspss 3288 . . . . . . . . . 10  |-  ( u 
C_  x  <->  ( u  C.  x  \/  u  =  x ) )
97, 8bitr4i 243 . . . . . . . . 9  |-  ( ( u [ C.]  x  \/  u  =  x )  <->  u 
C_  x )
109ralbii 2580 . . . . . . . 8  |-  ( A. u  e.  z  (
u [ C.]  x  \/  u  =  x )  <->  A. u  e.  z  u 
C_  x )
114, 10sylibr 203 . . . . . . 7  |-  ( x  =  U. z  ->  A. u  e.  z 
( u [ C.]  x  \/  u  =  x
) )
1211reximi 2663 . . . . . 6  |-  ( E. x  e.  A  x  =  U. z  ->  E. x  e.  A  A. u  e.  z 
( u [ C.]  x  \/  u  =  x
) )
131, 12sylbi 187 . . . . 5  |-  ( U. z  e.  A  ->  E. x  e.  A  A. u  e.  z  (
u [ C.]  x  \/  u  =  x )
)
1413imim2i 13 . . . 4  |-  ( ( ( z  C_  A  /\ [ C.]  Or  z )  ->  U. z  e.  A
)  ->  ( (
z  C_  A  /\ [ C.] 
Or  z )  ->  E. x  e.  A  A. u  e.  z 
( u [ C.]  x  \/  u  =  x
) ) )
1514alimi 1549 . . 3  |-  ( A. z ( ( z 
C_  A  /\ [ C.]  Or  z )  ->  U. z  e.  A )  ->  A. z
( ( z  C_  A  /\ [ C.]  Or  z
)  ->  E. x  e.  A  A. u  e.  z  ( u [ C.]  x  \/  u  =  x ) ) )
16 porpss 6297 . . . 4  |- [ C.]  Po  A
17 zorn2g 8146 . . . 4  |-  ( ( A  e.  dom  card  /\ [
C.]  Po  A  /\  A. z ( ( z 
C_  A  /\ [ C.]  Or  z )  ->  E. x  e.  A  A. u  e.  z  ( u [ C.]  x  \/  u  =  x ) ) )  ->  E. x  e.  A  A. y  e.  A  -.  x [ C.]  y )
1816, 17mp3an2 1265 . . 3  |-  ( ( A  e.  dom  card  /\ 
A. z ( ( z  C_  A  /\ [ C.] 
Or  z )  ->  E. x  e.  A  A. u  e.  z 
( u [ C.]  x  \/  u  =  x
) ) )  ->  E. x  e.  A  A. y  e.  A  -.  x [ C.]  y )
1915, 18sylan2 460 . 2  |-  ( ( A  e.  dom  card  /\ 
A. z ( ( z  C_  A  /\ [ C.] 
Or  z )  ->  U. z  e.  A
) )  ->  E. x  e.  A  A. y  e.  A  -.  x [ C.]  y )
20 vex 2804 . . . . . 6  |-  y  e. 
_V
2120brrpss 6296 . . . . 5  |-  ( x [
C.]  y  <->  x  C.  y )
2221notbii 287 . . . 4  |-  ( -.  x [ C.]  y  <->  -.  x  C.  y )
2322ralbii 2580 . . 3  |-  ( A. y  e.  A  -.  x [ C.]  y  <->  A. y  e.  A  -.  x  C.  y )
2423rexbii 2581 . 2  |-  ( E. x  e.  A  A. y  e.  A  -.  x [ C.]  y  <->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
2519, 24sylib 188 1  |-  ( ( A  e.  dom  card  /\ 
A. z ( ( z  C_  A  /\ [ C.] 
Or  z )  ->  U. z  e.  A
) )  ->  E. x  e.  A  A. y  e.  A  -.  x  C.  y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    C_ wss 3165    C. wpss 3166   U.cuni 3843   class class class wbr 4039    Po wpo 4328    Or wor 4329   dom cdm 4705   [ C.] crpss 6292   cardccrd 7584
This theorem is referenced by:  zornn0g  8148  zorn  8150
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-rpss 6293  df-riota 6320  df-recs 6404  df-en 6880  df-card 7588
  Copyright terms: Public domain W3C validator