MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0catg Structured version   Visualization version   GIF version

Theorem 0catg 16288
Description: Any structure with an empty set of objects is a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
Assertion
Ref Expression
0catg ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat)

Proof of Theorem 0catg
Dummy variables 𝑓 𝑔 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → ∅ = (Base‘𝐶))
2 eqidd 2622 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → (Hom ‘𝐶) = (Hom ‘𝐶))
3 eqidd 2622 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → (comp‘𝐶) = (comp‘𝐶))
4 simpl 473 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶𝑉)
5 noel 3901 . . . 4 ¬ 𝑥 ∈ ∅
65pm2.21i 116 . . 3 (𝑥 ∈ ∅ → ∅ ∈ (𝑥(Hom ‘𝐶)𝑥))
76adantl 482 . 2 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ 𝑥 ∈ ∅) → ∅ ∈ (𝑥(Hom ‘𝐶)𝑥))
8 simpr1 1065 . . 3 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))) → 𝑥 ∈ ∅)
95pm2.21i 116 . . 3 (𝑥 ∈ ∅ → (∅(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
108, 9syl 17 . 2 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))) → (∅(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
11 simpr1 1065 . . 3 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ ∅)
125pm2.21i 116 . . 3 (𝑥 ∈ ∅ → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)∅) = 𝑓)
1311, 12syl 17 . 2 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)∅) = 𝑓)
14 simp21 1092 . . 3 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ ∅)
155pm2.21i 116 . . 3 (𝑥 ∈ ∅ → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
1614, 15syl 17 . 2 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
17 simp2ll 1126 . . 3 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) ∧ (𝑧 ∈ ∅ ∧ 𝑤 ∈ ∅)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤))) → 𝑥 ∈ ∅)
185pm2.21i 116 . . 3 (𝑥 ∈ ∅ → (((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
1917, 18syl 17 . 2 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) ∧ (𝑧 ∈ ∅ ∧ 𝑤 ∈ ∅)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤))) → (((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
201, 2, 3, 4, 7, 10, 13, 16, 19iscatd 16274 1 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  c0 3897  cop 4161  cfv 5857  (class class class)co 6615  Basecbs 15800  Hom chom 15892  compcco 15893  Catccat 16265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-nul 4759
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-iota 5820  df-fv 5865  df-ov 6618  df-cat 16269
This theorem is referenced by:  0cat  16289
  Copyright terms: Public domain W3C validator