![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0cnf | Structured version Visualization version GIF version |
Description: The empty set is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
0cnf | ⊢ ∅ ∈ ({∅} Cn {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 6124 | . 2 ⊢ ∅:∅⟶∅ | |
2 | cnv0 5570 | . . . . . 6 ⊢ ◡∅ = ∅ | |
3 | 2 | imaeq1i 5498 | . . . . 5 ⊢ (◡∅ “ 𝑥) = (∅ “ 𝑥) |
4 | 0ima 5517 | . . . . 5 ⊢ (∅ “ 𝑥) = ∅ | |
5 | 3, 4 | eqtri 2673 | . . . 4 ⊢ (◡∅ “ 𝑥) = ∅ |
6 | 0ex 4823 | . . . . 5 ⊢ ∅ ∈ V | |
7 | 6 | snid 4241 | . . . 4 ⊢ ∅ ∈ {∅} |
8 | 5, 7 | eqeltri 2726 | . . 3 ⊢ (◡∅ “ 𝑥) ∈ {∅} |
9 | 8 | rgenw 2953 | . 2 ⊢ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅} |
10 | sn0topon 20850 | . . 3 ⊢ {∅} ∈ (TopOn‘∅) | |
11 | iscn 21087 | . . 3 ⊢ (({∅} ∈ (TopOn‘∅) ∧ {∅} ∈ (TopOn‘∅)) → (∅ ∈ ({∅} Cn {∅}) ↔ (∅:∅⟶∅ ∧ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅}))) | |
12 | 10, 10, 11 | mp2an 708 | . 2 ⊢ (∅ ∈ ({∅} Cn {∅}) ↔ (∅:∅⟶∅ ∧ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅})) |
13 | 1, 9, 12 | mpbir2an 975 | 1 ⊢ ∅ ∈ ({∅} Cn {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∈ wcel 2030 ∀wral 2941 ∅c0 3948 {csn 4210 ◡ccnv 5142 “ cima 5146 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 TopOnctopon 20763 Cn ccn 21076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-top 20747 df-topon 20764 df-cn 21079 |
This theorem is referenced by: cncfiooicc 40425 |
Copyright terms: Public domain | W3C validator |