MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dgrb Structured version   Visualization version   GIF version

Theorem 0dgrb 24838
Description: A function has degree zero iff it is a constant function. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
0dgrb (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))

Proof of Theorem 0dgrb
Dummy variables 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . . . . . 8 (coeff‘𝐹) = (coeff‘𝐹)
2 eqid 2823 . . . . . . . 8 (deg‘𝐹) = (deg‘𝐹)
31, 2coeid 24830 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))
43adantr 483 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))
5 simplr 767 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (deg‘𝐹) = 0)
65oveq2d 7174 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (0...(deg‘𝐹)) = (0...0))
76sumeq1d 15060 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)))
8 0z 11995 . . . . . . . . . 10 0 ∈ ℤ
9 exp0 13436 . . . . . . . . . . . . . 14 (𝑧 ∈ ℂ → (𝑧↑0) = 1)
109adantl 484 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (𝑧↑0) = 1)
1110oveq2d 7174 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · (𝑧↑0)) = (((coeff‘𝐹)‘0) · 1))
121coef3 24824 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
13 0nn0 11915 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
14 ffvelrn 6851 . . . . . . . . . . . . . . 15 (((coeff‘𝐹):ℕ0⟶ℂ ∧ 0 ∈ ℕ0) → ((coeff‘𝐹)‘0) ∈ ℂ)
1512, 13, 14sylancl 588 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹)‘0) ∈ ℂ)
1615ad2antrr 724 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → ((coeff‘𝐹)‘0) ∈ ℂ)
1716mulid1d 10660 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · 1) = ((coeff‘𝐹)‘0))
1811, 17eqtrd 2858 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · (𝑧↑0)) = ((coeff‘𝐹)‘0))
1918, 16eqeltrd 2915 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · (𝑧↑0)) ∈ ℂ)
20 fveq2 6672 . . . . . . . . . . . 12 (𝑘 = 0 → ((coeff‘𝐹)‘𝑘) = ((coeff‘𝐹)‘0))
21 oveq2 7166 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑧𝑘) = (𝑧↑0))
2220, 21oveq12d 7176 . . . . . . . . . . 11 (𝑘 = 0 → (((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘0) · (𝑧↑0)))
2322fsum1 15104 . . . . . . . . . 10 ((0 ∈ ℤ ∧ (((coeff‘𝐹)‘0) · (𝑧↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘0) · (𝑧↑0)))
248, 19, 23sylancr 589 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘0) · (𝑧↑0)))
2524, 18eqtrd 2858 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = ((coeff‘𝐹)‘0))
267, 25eqtrd 2858 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)) = ((coeff‘𝐹)‘0))
2726mpteq2dva 5163 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0)))
284, 27eqtrd 2858 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0)))
29 fconstmpt 5616 . . . . 5 (ℂ × {((coeff‘𝐹)‘0)}) = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0))
3028, 29syl6eqr 2876 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (ℂ × {((coeff‘𝐹)‘0)}))
3130fveq1d 6674 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (𝐹‘0) = ((ℂ × {((coeff‘𝐹)‘0)})‘0))
32 0cn 10635 . . . . . . . 8 0 ∈ ℂ
33 fvex 6685 . . . . . . . . 9 ((coeff‘𝐹)‘0) ∈ V
3433fvconst2 6968 . . . . . . . 8 (0 ∈ ℂ → ((ℂ × {((coeff‘𝐹)‘0)})‘0) = ((coeff‘𝐹)‘0))
3532, 34ax-mp 5 . . . . . . 7 ((ℂ × {((coeff‘𝐹)‘0)})‘0) = ((coeff‘𝐹)‘0)
3631, 35syl6eq 2874 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (𝐹‘0) = ((coeff‘𝐹)‘0))
3736sneqd 4581 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → {(𝐹‘0)} = {((coeff‘𝐹)‘0)})
3837xpeq2d 5587 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → (ℂ × {(𝐹‘0)}) = (ℂ × {((coeff‘𝐹)‘0)}))
3930, 38eqtr4d 2861 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) = 0) → 𝐹 = (ℂ × {(𝐹‘0)}))
4039ex 415 . 2 (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 → 𝐹 = (ℂ × {(𝐹‘0)})))
41 plyf 24790 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
42 ffvelrn 6851 . . . . 5 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
4341, 32, 42sylancl 588 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) ∈ ℂ)
44 0dgr 24837 . . . 4 ((𝐹‘0) ∈ ℂ → (deg‘(ℂ × {(𝐹‘0)})) = 0)
4543, 44syl 17 . . 3 (𝐹 ∈ (Poly‘𝑆) → (deg‘(ℂ × {(𝐹‘0)})) = 0)
46 fveqeq2 6681 . . 3 (𝐹 = (ℂ × {(𝐹‘0)}) → ((deg‘𝐹) = 0 ↔ (deg‘(ℂ × {(𝐹‘0)})) = 0))
4745, 46syl5ibrcom 249 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = (ℂ × {(𝐹‘0)}) → (deg‘𝐹) = 0))
4840, 47impbid 214 1 (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {csn 4569  cmpt 5148   × cxp 5555  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   · cmul 10544  0cn0 11900  cz 11984  ...cfz 12895  cexp 13432  Σcsu 15044  Polycply 24776  coeffccoe 24778  degcdgr 24779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045  df-0p 24273  df-ply 24780  df-coe 24782  df-dgr 24783
This theorem is referenced by:  dgrnznn  24839  dgreq0  24857  dgrcolem2  24866  dgrco  24867  plyrem  24896  fta1  24899  aaliou2  24931
  Copyright terms: Public domain W3C validator