Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0dig2nn0o Structured version   Visualization version   GIF version

Theorem 0dig2nn0o 44680
Description: The last bit of an odd integer is 1. (Contributed by AV, 3-Jun-2010.)
Assertion
Ref Expression
0dig2nn0o ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 1)

Proof of Theorem 0dig2nn0o
StepHypRef Expression
1 2nn 11713 . . . 4 2 ∈ ℕ
21a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ∈ ℕ)
3 0nn0 11915 . . . 4 0 ∈ ℕ0
43a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 0 ∈ ℕ0)
5 nn0rp0 12846 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
65adantr 483 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 𝑁 ∈ (0[,)+∞))
7 nn0digval 44667 . . 3 ((2 ∈ ℕ ∧ 0 ∈ ℕ0𝑁 ∈ (0[,)+∞)) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2))
82, 4, 6, 7syl3anc 1367 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2))
9 2cn 11715 . . . . . . . 8 2 ∈ ℂ
10 exp0 13436 . . . . . . . 8 (2 ∈ ℂ → (2↑0) = 1)
119, 10mp1i 13 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2↑0) = 1)
1211oveq2d 7175 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = (𝑁 / 1))
13 nn0cn 11910 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
1413div1d 11411 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 / 1) = 𝑁)
1514adantr 483 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 / 1) = 𝑁)
1612, 15eqtrd 2859 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = 𝑁)
1716fveq2d 6677 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(𝑁 / (2↑0))) = (⌊‘𝑁))
1817oveq1d 7174 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = ((⌊‘𝑁) mod 2))
19 nn0z 12008 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
20 flid 13181 . . . . . . 7 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
2119, 20syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (⌊‘𝑁) = 𝑁)
2221oveq1d 7174 . . . . 5 (𝑁 ∈ ℕ0 → ((⌊‘𝑁) mod 2) = (𝑁 mod 2))
2322adantr 483 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = (𝑁 mod 2))
24 nn0z 12008 . . . . . . . 8 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
2524adantl 484 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℤ)
26 2z 12017 . . . . . . . . 9 2 ∈ ℤ
2726a1i 11 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ∈ ℤ)
28 2ne0 11744 . . . . . . . . 9 2 ≠ 0
2928a1i 11 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ≠ 0)
30 peano2nn0 11940 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
3130nn0zd 12088 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
3231adantr 483 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 + 1) ∈ ℤ)
33 dvdsval2 15613 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑁 + 1) ∈ ℤ) → (2 ∥ (𝑁 + 1) ↔ ((𝑁 + 1) / 2) ∈ ℤ))
3427, 29, 32, 33syl3anc 1367 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 ∥ (𝑁 + 1) ↔ ((𝑁 + 1) / 2) ∈ ℤ))
3525, 34mpbird 259 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ∥ (𝑁 + 1))
36 oddp1even 15696 . . . . . . . 8 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
3719, 36syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
3837adantr 483 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
3935, 38mpbird 259 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ¬ 2 ∥ 𝑁)
4019adantr 483 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 𝑁 ∈ ℤ)
41 mod2eq1n2dvds 15699 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
4240, 41syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
4339, 42mpbird 259 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 mod 2) = 1)
4423, 43eqtrd 2859 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = 1)
4518, 44eqtrd 2859 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = 1)
468, 45eqtrd 2859 1 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   + caddc 10543  +∞cpnf 10675   / cdiv 11300  cn 11641  2c2 11695  0cn0 11900  cz 11984  [,)cico 12743  cfl 13163   mod cmo 13240  cexp 13432  cdvds 15610  digitcdig 44662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-dvds 15611  df-dig 44663
This theorem is referenced by:  nn0sumshdiglemB  44687
  Copyright terms: Public domain W3C validator