Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0dig2nn0o Structured version   Visualization version   GIF version

Theorem 0dig2nn0o 41699
Description: The last bit of an odd integer is 1. (Contributed by AV, 3-Jun-2010.)
Assertion
Ref Expression
0dig2nn0o ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 1)

Proof of Theorem 0dig2nn0o
StepHypRef Expression
1 2nn 11129 . . . 4 2 ∈ ℕ
21a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ∈ ℕ)
3 0nn0 11251 . . . 4 0 ∈ ℕ0
43a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 0 ∈ ℕ0)
5 nn0rp0 12221 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
65adantr 481 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 𝑁 ∈ (0[,)+∞))
7 nn0digval 41686 . . 3 ((2 ∈ ℕ ∧ 0 ∈ ℕ0𝑁 ∈ (0[,)+∞)) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2))
82, 4, 6, 7syl3anc 1323 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2))
9 2cn 11035 . . . . . . . 8 2 ∈ ℂ
10 exp0 12804 . . . . . . . 8 (2 ∈ ℂ → (2↑0) = 1)
119, 10mp1i 13 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2↑0) = 1)
1211oveq2d 6620 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = (𝑁 / 1))
13 nn0cn 11246 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
1413div1d 10737 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 / 1) = 𝑁)
1514adantr 481 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 / 1) = 𝑁)
1612, 15eqtrd 2655 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = 𝑁)
1716fveq2d 6152 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(𝑁 / (2↑0))) = (⌊‘𝑁))
1817oveq1d 6619 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = ((⌊‘𝑁) mod 2))
19 nn0z 11344 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
20 flid 12549 . . . . . . 7 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
2119, 20syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (⌊‘𝑁) = 𝑁)
2221oveq1d 6619 . . . . 5 (𝑁 ∈ ℕ0 → ((⌊‘𝑁) mod 2) = (𝑁 mod 2))
2322adantr 481 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = (𝑁 mod 2))
24 nn0z 11344 . . . . . . . 8 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
2524adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℤ)
26 2z 11353 . . . . . . . . 9 2 ∈ ℤ
2726a1i 11 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ∈ ℤ)
28 2ne0 11057 . . . . . . . . 9 2 ≠ 0
2928a1i 11 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ≠ 0)
30 peano2nn0 11277 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
3130nn0zd 11424 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
3231adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 + 1) ∈ ℤ)
33 dvdsval2 14910 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑁 + 1) ∈ ℤ) → (2 ∥ (𝑁 + 1) ↔ ((𝑁 + 1) / 2) ∈ ℤ))
3427, 29, 32, 33syl3anc 1323 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 ∥ (𝑁 + 1) ↔ ((𝑁 + 1) / 2) ∈ ℤ))
3525, 34mpbird 247 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ∥ (𝑁 + 1))
36 oddp1even 14992 . . . . . . . 8 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
3719, 36syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
3837adantr 481 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
3935, 38mpbird 247 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ¬ 2 ∥ 𝑁)
4019adantr 481 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 𝑁 ∈ ℤ)
41 mod2eq1n2dvds 14995 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
4240, 41syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
4339, 42mpbird 247 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 mod 2) = 1)
4423, 43eqtrd 2655 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = 1)
4518, 44eqtrd 2655 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = 1)
468, 45eqtrd 2655 1 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881   + caddc 9883  +∞cpnf 10015   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  [,)cico 12119  cfl 12531   mod cmo 12608  cexp 12800  cdvds 14907  digitcdig 41681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-ico 12123  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-dvds 14908  df-dig 41682
This theorem is referenced by:  nn0sumshdiglemB  41706
  Copyright terms: Public domain W3C validator