![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0dp2dp | Structured version Visualization version GIF version |
Description: Multiply by 10 a decimal expansion which starts with a zero. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
0dp2dp.a | ⊢ 𝐴 ∈ ℕ0 |
0dp2dp.b | ⊢ 𝐵 ∈ ℝ+ |
Ref | Expression |
---|---|
0dp2dp | ⊢ ((0._𝐴𝐵) · ;10) = (𝐴.𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0dp2dp.a | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
2 | 0dp2dp.b | . . . 4 ⊢ 𝐵 ∈ ℝ+ | |
3 | 0p1e1 11170 | . . . 4 ⊢ (0 + 1) = 1 | |
4 | 0z 11426 | . . . 4 ⊢ 0 ∈ ℤ | |
5 | 1z 11445 | . . . 4 ⊢ 1 ∈ ℤ | |
6 | 1, 2, 3, 4, 5 | dpexpp1 29744 | . . 3 ⊢ ((𝐴.𝐵) · (;10↑0)) = ((0._𝐴𝐵) · (;10↑1)) |
7 | 10nn0 11554 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
8 | 7 | nn0cni 11342 | . . . . 5 ⊢ ;10 ∈ ℂ |
9 | exp0 12904 | . . . . 5 ⊢ (;10 ∈ ℂ → (;10↑0) = 1) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ (;10↑0) = 1 |
11 | 10 | oveq2i 6701 | . . 3 ⊢ ((𝐴.𝐵) · (;10↑0)) = ((𝐴.𝐵) · 1) |
12 | exp1 12906 | . . . . 5 ⊢ (;10 ∈ ℂ → (;10↑1) = ;10) | |
13 | 8, 12 | ax-mp 5 | . . . 4 ⊢ (;10↑1) = ;10 |
14 | 13 | oveq2i 6701 | . . 3 ⊢ ((0._𝐴𝐵) · (;10↑1)) = ((0._𝐴𝐵) · ;10) |
15 | 6, 11, 14 | 3eqtr3ri 2682 | . 2 ⊢ ((0._𝐴𝐵) · ;10) = ((𝐴.𝐵) · 1) |
16 | 1, 2 | rpdpcl 29739 | . . . 4 ⊢ (𝐴.𝐵) ∈ ℝ+ |
17 | rpcn 11879 | . . . 4 ⊢ ((𝐴.𝐵) ∈ ℝ+ → (𝐴.𝐵) ∈ ℂ) | |
18 | 16, 17 | ax-mp 5 | . . 3 ⊢ (𝐴.𝐵) ∈ ℂ |
19 | mulid1 10075 | . . 3 ⊢ ((𝐴.𝐵) ∈ ℂ → ((𝐴.𝐵) · 1) = (𝐴.𝐵)) | |
20 | 18, 19 | ax-mp 5 | . 2 ⊢ ((𝐴.𝐵) · 1) = (𝐴.𝐵) |
21 | 15, 20 | eqtri 2673 | 1 ⊢ ((0._𝐴𝐵) · ;10) = (𝐴.𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 (class class class)co 6690 ℂcc 9972 0cc0 9974 1c1 9975 · cmul 9979 ℕ0cn0 11330 ;cdc 11531 ℝ+crp 11870 ↑cexp 12900 _cdp2 29705 .cdp 29723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-rp 11871 df-seq 12842 df-exp 12901 df-dp2 29706 df-dp 29724 |
This theorem is referenced by: hgt750lem 30857 |
Copyright terms: Public domain | W3C validator |