MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0frgp Structured version   Visualization version   GIF version

Theorem 0frgp 18908
Description: The free group on zero generators is trivial. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
0frgp.g 𝐺 = (freeGrp‘∅)
0frgp.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
0frgp 𝐵 ≈ 1o

Proof of Theorem 0frgp
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5214 . . . . . . . . . . . 12 ∅ ∈ V
2 0frgp.g . . . . . . . . . . . . 13 𝐺 = (freeGrp‘∅)
32frgpgrp 18891 . . . . . . . . . . . 12 (∅ ∈ V → 𝐺 ∈ Grp)
41, 3ax-mp 5 . . . . . . . . . . 11 𝐺 ∈ Grp
5 f0 6563 . . . . . . . . . . 11 ∅:∅⟶𝐵
6 0frgp.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
7 eqid 2824 . . . . . . . . . . . . . . . 16 ( ~FG ‘∅) = ( ~FG ‘∅)
8 eqid 2824 . . . . . . . . . . . . . . . 16 (varFGrp‘∅) = (varFGrp‘∅)
97, 8, 2, 6vrgpf 18897 . . . . . . . . . . . . . . 15 (∅ ∈ V → (varFGrp‘∅):∅⟶𝐵)
10 ffn 6517 . . . . . . . . . . . . . . 15 ((varFGrp‘∅):∅⟶𝐵 → (varFGrp‘∅) Fn ∅)
111, 9, 10mp2b 10 . . . . . . . . . . . . . 14 (varFGrp‘∅) Fn ∅
12 fn0 6482 . . . . . . . . . . . . . 14 ((varFGrp‘∅) Fn ∅ ↔ (varFGrp‘∅) = ∅)
1311, 12mpbi 232 . . . . . . . . . . . . 13 (varFGrp‘∅) = ∅
1413eqcomi 2833 . . . . . . . . . . . 12 ∅ = (varFGrp‘∅)
152, 6, 14frgpup3 18907 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ ∅ ∈ V ∧ ∅:∅⟶𝐵) → ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅)
164, 1, 5, 15mp3an 1457 . . . . . . . . . 10 ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅
17 reurmo 3436 . . . . . . . . . 10 (∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ → ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅)
1816, 17ax-mp 5 . . . . . . . . 9 ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅
196idghm 18376 . . . . . . . . . . 11 (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺))
204, 19ax-mp 5 . . . . . . . . . 10 ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)
21 tru 1540 . . . . . . . . . 10
2220, 21pm3.2i 473 . . . . . . . . 9 (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤)
23 eqid 2824 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
2423, 60ghm 18375 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) → (𝐵 × {(0g𝐺)}) ∈ (𝐺 GrpHom 𝐺))
254, 4, 24mp2an 690 . . . . . . . . . 10 (𝐵 × {(0g𝐺)}) ∈ (𝐺 GrpHom 𝐺)
2625, 21pm3.2i 473 . . . . . . . . 9 ((𝐵 × {(0g𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤)
27 co02 6116 . . . . . . . . . . . 12 (𝑓 ∘ ∅) = ∅
2827bitru 1545 . . . . . . . . . . 11 ((𝑓 ∘ ∅) = ∅ ↔ ⊤)
2928a1i 11 . . . . . . . . . 10 (𝑓 = ( I ↾ 𝐵) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤))
3028a1i 11 . . . . . . . . . 10 (𝑓 = (𝐵 × {(0g𝐺)}) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤))
3129, 30rmoi 3878 . . . . . . . . 9 ((∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ ∧ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) ∧ ((𝐵 × {(0g𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤)) → ( I ↾ 𝐵) = (𝐵 × {(0g𝐺)}))
3218, 22, 26, 31mp3an 1457 . . . . . . . 8 ( I ↾ 𝐵) = (𝐵 × {(0g𝐺)})
33 mptresid 5921 . . . . . . . 8 ( I ↾ 𝐵) = (𝑥𝐵𝑥)
34 fconstmpt 5617 . . . . . . . 8 (𝐵 × {(0g𝐺)}) = (𝑥𝐵 ↦ (0g𝐺))
3532, 33, 343eqtr3i 2855 . . . . . . 7 (𝑥𝐵𝑥) = (𝑥𝐵 ↦ (0g𝐺))
36 mpteqb 6790 . . . . . . . 8 (∀𝑥𝐵 𝑥𝐵 → ((𝑥𝐵𝑥) = (𝑥𝐵 ↦ (0g𝐺)) ↔ ∀𝑥𝐵 𝑥 = (0g𝐺)))
37 id 22 . . . . . . . 8 (𝑥𝐵𝑥𝐵)
3836, 37mprg 3155 . . . . . . 7 ((𝑥𝐵𝑥) = (𝑥𝐵 ↦ (0g𝐺)) ↔ ∀𝑥𝐵 𝑥 = (0g𝐺))
3935, 38mpbi 232 . . . . . 6 𝑥𝐵 𝑥 = (0g𝐺)
4039rspec 3210 . . . . 5 (𝑥𝐵𝑥 = (0g𝐺))
41 velsn 4586 . . . . 5 (𝑥 ∈ {(0g𝐺)} ↔ 𝑥 = (0g𝐺))
4240, 41sylibr 236 . . . 4 (𝑥𝐵𝑥 ∈ {(0g𝐺)})
4342ssriv 3974 . . 3 𝐵 ⊆ {(0g𝐺)}
446, 23grpidcl 18134 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
454, 44ax-mp 5 . . . 4 (0g𝐺) ∈ 𝐵
46 snssi 4744 . . . 4 ((0g𝐺) ∈ 𝐵 → {(0g𝐺)} ⊆ 𝐵)
4745, 46ax-mp 5 . . 3 {(0g𝐺)} ⊆ 𝐵
4843, 47eqssi 3986 . 2 𝐵 = {(0g𝐺)}
49 fvex 6686 . . 3 (0g𝐺) ∈ V
5049ensn1 8576 . 2 {(0g𝐺)} ≈ 1o
5148, 50eqbrtri 5090 1 𝐵 ≈ 1o
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1536  wtru 1537  wcel 2113  wral 3141  ∃!wreu 3143  ∃*wrmo 3144  Vcvv 3497  wss 3939  c0 4294  {csn 4570   class class class wbr 5069  cmpt 5149   I cid 5462   × cxp 5556  cres 5560  ccom 5562   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  1oc1o 8098  cen 8509  Basecbs 16486  0gc0g 16716  Grpcgrp 18106   GrpHom cghm 18358   ~FG cefg 18835  freeGrpcfrgp 18836  varFGrpcvrgp 18837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-ot 4579  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-ec 8294  df-qs 8298  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-word 13865  df-lsw 13918  df-concat 13926  df-s1 13953  df-substr 14006  df-pfx 14036  df-splice 14115  df-reverse 14124  df-s2 14213  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-0g 16718  df-gsum 16719  df-imas 16784  df-qus 16785  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-frmd 18017  df-vrmd 18018  df-grp 18109  df-minusg 18110  df-ghm 18359  df-efg 18838  df-frgp 18839  df-vrgp 18840
This theorem is referenced by:  frgpcyg  20723
  Copyright terms: Public domain W3C validator