MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0g0 Structured version   Visualization version   GIF version

Theorem 0g0 17184
Description: The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
Assertion
Ref Expression
0g0 ∅ = (0g‘∅)

Proof of Theorem 0g0
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 base0 15833 . . 3 ∅ = (Base‘∅)
2 eqid 2621 . . 3 (+g‘∅) = (+g‘∅)
3 eqid 2621 . . 3 (0g‘∅) = (0g‘∅)
41, 2, 3grpidval 17181 . 2 (0g‘∅) = (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)))
5 noel 3895 . . . . . 6 ¬ 𝑒 ∈ ∅
65intnanr 960 . . . . 5 ¬ (𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))
76nex 1728 . . . 4 ¬ ∃𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))
8 euex 2493 . . . 4 (∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) → ∃𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)))
97, 8mto 188 . . 3 ¬ ∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))
10 iotanul 5825 . . 3 (¬ ∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) → (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) = ∅)
119, 10ax-mp 5 . 2 (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) = ∅
124, 11eqtr2i 2644 1 ∅ = (0g‘∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1480  wex 1701  wcel 1987  ∃!weu 2469  wral 2907  c0 3891  cio 5808  cfv 5847  (class class class)co 6604  +gcplusg 15862  0gc0g 16021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-slot 15785  df-base 15786  df-0g 16023
This theorem is referenced by:  frmd0  17318  ringidval  18424
  Copyright terms: Public domain W3C validator