MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0g0 Structured version   Visualization version   GIF version

Theorem 0g0 17876
Description: The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
Assertion
Ref Expression
0g0 ∅ = (0g‘∅)

Proof of Theorem 0g0
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 base0 16538 . . 3 ∅ = (Base‘∅)
2 eqid 2823 . . 3 (+g‘∅) = (+g‘∅)
3 eqid 2823 . . 3 (0g‘∅) = (0g‘∅)
41, 2, 3grpidval 17873 . 2 (0g‘∅) = (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)))
5 noel 4298 . . . . . 6 ¬ 𝑒 ∈ ∅
65intnanr 490 . . . . 5 ¬ (𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))
76nex 1801 . . . 4 ¬ ∃𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))
8 euex 2662 . . . 4 (∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) → ∃𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)))
97, 8mto 199 . . 3 ¬ ∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))
10 iotanul 6335 . . 3 (¬ ∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) → (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) = ∅)
119, 10ax-mp 5 . 2 (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) = ∅
124, 11eqtr2i 2847 1 ∅ = (0g‘∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1537  wex 1780  wcel 2114  ∃!weu 2653  wral 3140  c0 4293  cio 6314  cfv 6357  (class class class)co 7158  +gcplusg 16567  0gc0g 16715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-slot 16489  df-base 16491  df-0g 16717
This theorem is referenced by:  frmd0  18027  ringidval  19255
  Copyright terms: Public domain W3C validator