MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0grsubgr Structured version   Visualization version   GIF version

Theorem 0grsubgr 27054
Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.)
Assertion
Ref Expression
0grsubgr (𝐺𝑊 → ∅ SubGraph 𝐺)

Proof of Theorem 0grsubgr
StepHypRef Expression
1 0ss 4349 . . 3 ∅ ⊆ (Vtx‘𝐺)
2 dm0 5784 . . . . 5 dom ∅ = ∅
32reseq2i 5844 . . . 4 ((iEdg‘𝐺) ↾ dom ∅) = ((iEdg‘𝐺) ↾ ∅)
4 res0 5851 . . . 4 ((iEdg‘𝐺) ↾ ∅) = ∅
53, 4eqtr2i 2845 . . 3 ∅ = ((iEdg‘𝐺) ↾ dom ∅)
6 0ss 4349 . . 3 ∅ ⊆ 𝒫 ∅
71, 5, 63pm3.2i 1335 . 2 (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)
8 0ex 5203 . . 3 ∅ ∈ V
9 vtxval0 26818 . . . . 5 (Vtx‘∅) = ∅
109eqcomi 2830 . . . 4 ∅ = (Vtx‘∅)
11 eqid 2821 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
12 iedgval0 26819 . . . . 5 (iEdg‘∅) = ∅
1312eqcomi 2830 . . . 4 ∅ = (iEdg‘∅)
14 eqid 2821 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
15 edgval 26828 . . . . 5 (Edg‘∅) = ran (iEdg‘∅)
1612rneqi 5801 . . . . 5 ran (iEdg‘∅) = ran ∅
17 rn0 5790 . . . . 5 ran ∅ = ∅
1815, 16, 173eqtrri 2849 . . . 4 ∅ = (Edg‘∅)
1910, 11, 13, 14, 18issubgr 27047 . . 3 ((𝐺𝑊 ∧ ∅ ∈ V) → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)))
208, 19mpan2 689 . 2 (𝐺𝑊 → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)))
217, 20mpbiri 260 1 (𝐺𝑊 → ∅ SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  wss 3935  c0 4290  𝒫 cpw 4538   class class class wbr 5058  dom cdm 5549  ran crn 5550  cres 5551  cfv 6349  Vtxcvtx 26775  iEdgciedg 26776  Edgcedg 26826   SubGraph csubgr 27043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-iota 6308  df-fun 6351  df-fv 6357  df-slot 16481  df-base 16483  df-edgf 26769  df-vtx 26777  df-iedg 26778  df-edg 26827  df-subgr 27044
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator