Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0he Structured version   Visualization version   GIF version

Theorem 0he 37558
 Description: The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.)
Assertion
Ref Expression
0he ∅ hereditary 𝐴

Proof of Theorem 0he
StepHypRef Expression
1 0ima 5441 . . 3 (∅ “ 𝐴) = ∅
2 0ss 3944 . . 3 ∅ ⊆ 𝐴
31, 2eqsstri 3614 . 2 (∅ “ 𝐴) ⊆ 𝐴
4 df-he 37549 . 2 (∅ hereditary 𝐴 ↔ (∅ “ 𝐴) ⊆ 𝐴)
53, 4mpbir 221 1 ∅ hereditary 𝐴
 Colors of variables: wff setvar class Syntax hints:   ⊆ wss 3555  ∅c0 3891   “ cima 5077   hereditary whe 37548 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-xp 5080  df-cnv 5082  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-he 37549 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator