MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0idsr Structured version   Visualization version   GIF version

Theorem 0idsr 10513
Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
0idsr (𝐴R → (𝐴 +R 0R) = 𝐴)

Proof of Theorem 0idsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 10472 . 2 R = ((P × P) / ~R )
2 oveq1 7157 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R +R 0R) = (𝐴 +R 0R))
3 id 22 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → [⟨𝑥, 𝑦⟩] ~R = 𝐴)
42, 3eqeq12d 2837 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R +R 0R) = [⟨𝑥, 𝑦⟩] ~R ↔ (𝐴 +R 0R) = 𝐴))
5 df-0r 10476 . . . 4 0R = [⟨1P, 1P⟩] ~R
65oveq2i 7161 . . 3 ([⟨𝑥, 𝑦⟩] ~R +R 0R) = ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R )
7 1pr 10431 . . . . 5 1PP
8 addsrpr 10491 . . . . 5 (((𝑥P𝑦P) ∧ (1PP ∧ 1PP)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R ) = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R )
97, 7, 8mpanr12 703 . . . 4 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R ) = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R )
10 addclpr 10434 . . . . . . 7 ((𝑥P ∧ 1PP) → (𝑥 +P 1P) ∈ P)
117, 10mpan2 689 . . . . . 6 (𝑥P → (𝑥 +P 1P) ∈ P)
12 addclpr 10434 . . . . . . 7 ((𝑦P ∧ 1PP) → (𝑦 +P 1P) ∈ P)
137, 12mpan2 689 . . . . . 6 (𝑦P → (𝑦 +P 1P) ∈ P)
1411, 13anim12i 614 . . . . 5 ((𝑥P𝑦P) → ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P))
15 vex 3497 . . . . . . 7 𝑥 ∈ V
16 vex 3497 . . . . . . 7 𝑦 ∈ V
177elexi 3513 . . . . . . 7 1P ∈ V
18 addcompr 10437 . . . . . . 7 (𝑧 +P 𝑤) = (𝑤 +P 𝑧)
19 addasspr 10438 . . . . . . 7 ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣))
2015, 16, 17, 18, 19caov12 7370 . . . . . 6 (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P))
21 enreceq 10482 . . . . . 6 (((𝑥P𝑦P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P))))
2220, 21mpbiri 260 . . . . 5 (((𝑥P𝑦P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → [⟨𝑥, 𝑦⟩] ~R = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R )
2314, 22mpdan 685 . . . 4 ((𝑥P𝑦P) → [⟨𝑥, 𝑦⟩] ~R = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R )
249, 23eqtr4d 2859 . . 3 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R ) = [⟨𝑥, 𝑦⟩] ~R )
256, 24syl5eq 2868 . 2 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R +R 0R) = [⟨𝑥, 𝑦⟩] ~R )
261, 4, 25ecoptocl 8381 1 (𝐴R → (𝐴 +R 0R) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cop 4566  (class class class)co 7150  [cec 8281  Pcnp 10275  1Pc1p 10276   +P cpp 10277   ~R cer 10280  Rcnr 10281  0Rc0r 10282   +R cplr 10285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-omul 8101  df-er 8283  df-ec 8285  df-qs 8289  df-ni 10288  df-pli 10289  df-mi 10290  df-lti 10291  df-plpq 10324  df-mpq 10325  df-ltpq 10326  df-enq 10327  df-nq 10328  df-erq 10329  df-plq 10330  df-mq 10331  df-1nq 10332  df-rq 10333  df-ltnq 10334  df-np 10397  df-1p 10398  df-plp 10399  df-ltp 10401  df-enr 10471  df-nr 10472  df-plr 10473  df-0r 10476
This theorem is referenced by:  addgt0sr  10520  sqgt0sr  10522  map2psrpr  10526  supsrlem  10527  addresr  10554  mulresr  10555  axi2m1  10575  axcnre  10580
  Copyright terms: Public domain W3C validator