MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0lmhm Structured version   Visualization version   GIF version

Theorem 0lmhm 18980
Description: The constant zero linear function between two modules. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
0lmhm.z 0 = (0g𝑁)
0lmhm.b 𝐵 = (Base‘𝑀)
0lmhm.s 𝑆 = (Scalar‘𝑀)
0lmhm.t 𝑇 = (Scalar‘𝑁)
Assertion
Ref Expression
0lmhm ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁))

Proof of Theorem 0lmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lmhm.b . 2 𝐵 = (Base‘𝑀)
2 eqid 2621 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3 eqid 2621 . 2 ( ·𝑠𝑁) = ( ·𝑠𝑁)
4 0lmhm.s . 2 𝑆 = (Scalar‘𝑀)
5 0lmhm.t . 2 𝑇 = (Scalar‘𝑁)
6 eqid 2621 . 2 (Base‘𝑆) = (Base‘𝑆)
7 simp1 1059 . 2 ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑀 ∈ LMod)
8 simp2 1060 . 2 ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑁 ∈ LMod)
9 simp3 1061 . . 3 ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑆 = 𝑇)
109eqcomd 2627 . 2 ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑇 = 𝑆)
11 lmodgrp 18810 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
12 lmodgrp 18810 . . . 4 (𝑁 ∈ LMod → 𝑁 ∈ Grp)
13 0lmhm.z . . . . 5 0 = (0g𝑁)
1413, 10ghm 17614 . . . 4 ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁))
1511, 12, 14syl2an 494 . . 3 ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁))
16153adant3 1079 . 2 ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁))
17 simpl2 1063 . . . 4 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → 𝑁 ∈ LMod)
18 simprl 793 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → 𝑥 ∈ (Base‘𝑆))
19 simpl3 1064 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → 𝑆 = 𝑇)
2019fveq2d 6162 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → (Base‘𝑆) = (Base‘𝑇))
2118, 20eleqtrd 2700 . . . 4 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → 𝑥 ∈ (Base‘𝑇))
22 eqid 2621 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
235, 3, 22, 13lmodvs0 18837 . . . 4 ((𝑁 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑇)) → (𝑥( ·𝑠𝑁) 0 ) = 0 )
2417, 21, 23syl2anc 692 . . 3 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → (𝑥( ·𝑠𝑁) 0 ) = 0 )
25 fvex 6168 . . . . . . 7 (0g𝑁) ∈ V
2613, 25eqeltri 2694 . . . . . 6 0 ∈ V
2726fvconst2 6434 . . . . 5 (𝑦𝐵 → ((𝐵 × { 0 })‘𝑦) = 0 )
2827oveq2d 6631 . . . 4 (𝑦𝐵 → (𝑥( ·𝑠𝑁)((𝐵 × { 0 })‘𝑦)) = (𝑥( ·𝑠𝑁) 0 ))
2928ad2antll 764 . . 3 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → (𝑥( ·𝑠𝑁)((𝐵 × { 0 })‘𝑦)) = (𝑥( ·𝑠𝑁) 0 ))
30 simpl1 1062 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → 𝑀 ∈ LMod)
31 simprr 795 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → 𝑦𝐵)
321, 4, 2, 6lmodvscl 18820 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝐵)
3330, 18, 31, 32syl3anc 1323 . . . 4 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝐵)
3426fvconst2 6434 . . . 4 ((𝑥( ·𝑠𝑀)𝑦) ∈ 𝐵 → ((𝐵 × { 0 })‘(𝑥( ·𝑠𝑀)𝑦)) = 0 )
3533, 34syl 17 . . 3 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → ((𝐵 × { 0 })‘(𝑥( ·𝑠𝑀)𝑦)) = 0 )
3624, 29, 353eqtr4rd 2666 . 2 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → ((𝐵 × { 0 })‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)((𝐵 × { 0 })‘𝑦)))
371, 2, 3, 4, 5, 6, 7, 8, 10, 16, 36islmhmd 18979 1 ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3190  {csn 4155   × cxp 5082  cfv 5857  (class class class)co 6615  Basecbs 15800  Scalarcsca 15884   ·𝑠 cvsca 15885  0gc0g 16040  Grpcgrp 17362   GrpHom cghm 17597  LModclmod 18803   LMHom clmhm 18959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-plusg 15894  df-0g 16042  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-mhm 17275  df-grp 17365  df-ghm 17598  df-mgp 18430  df-ring 18489  df-lmod 18805  df-lmhm 18962
This theorem is referenced by:  0nmhm  22499  mendring  37282
  Copyright terms: Public domain W3C validator