MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0lmhm Structured version   Visualization version   GIF version

Theorem 0lmhm 19806
Description: The constant zero linear function between two modules. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
0lmhm.z 0 = (0g𝑁)
0lmhm.b 𝐵 = (Base‘𝑀)
0lmhm.s 𝑆 = (Scalar‘𝑀)
0lmhm.t 𝑇 = (Scalar‘𝑁)
Assertion
Ref Expression
0lmhm ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁))

Proof of Theorem 0lmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lmhm.b . 2 𝐵 = (Base‘𝑀)
2 eqid 2821 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3 eqid 2821 . 2 ( ·𝑠𝑁) = ( ·𝑠𝑁)
4 0lmhm.s . 2 𝑆 = (Scalar‘𝑀)
5 0lmhm.t . 2 𝑇 = (Scalar‘𝑁)
6 eqid 2821 . 2 (Base‘𝑆) = (Base‘𝑆)
7 simp1 1132 . 2 ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑀 ∈ LMod)
8 simp2 1133 . 2 ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑁 ∈ LMod)
9 simp3 1134 . . 3 ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑆 = 𝑇)
109eqcomd 2827 . 2 ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑇 = 𝑆)
11 lmodgrp 19635 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
12 lmodgrp 19635 . . . 4 (𝑁 ∈ LMod → 𝑁 ∈ Grp)
13 0lmhm.z . . . . 5 0 = (0g𝑁)
1413, 10ghm 18366 . . . 4 ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁))
1511, 12, 14syl2an 597 . . 3 ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁))
16153adant3 1128 . 2 ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁))
17 simpl2 1188 . . . 4 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → 𝑁 ∈ LMod)
18 simprl 769 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → 𝑥 ∈ (Base‘𝑆))
19 simpl3 1189 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → 𝑆 = 𝑇)
2019fveq2d 6668 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → (Base‘𝑆) = (Base‘𝑇))
2118, 20eleqtrd 2915 . . . 4 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → 𝑥 ∈ (Base‘𝑇))
22 eqid 2821 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
235, 3, 22, 13lmodvs0 19662 . . . 4 ((𝑁 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑇)) → (𝑥( ·𝑠𝑁) 0 ) = 0 )
2417, 21, 23syl2anc 586 . . 3 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → (𝑥( ·𝑠𝑁) 0 ) = 0 )
2513fvexi 6678 . . . . . 6 0 ∈ V
2625fvconst2 6960 . . . . 5 (𝑦𝐵 → ((𝐵 × { 0 })‘𝑦) = 0 )
2726oveq2d 7166 . . . 4 (𝑦𝐵 → (𝑥( ·𝑠𝑁)((𝐵 × { 0 })‘𝑦)) = (𝑥( ·𝑠𝑁) 0 ))
2827ad2antll 727 . . 3 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → (𝑥( ·𝑠𝑁)((𝐵 × { 0 })‘𝑦)) = (𝑥( ·𝑠𝑁) 0 ))
29 simpl1 1187 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → 𝑀 ∈ LMod)
30 simprr 771 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → 𝑦𝐵)
311, 4, 2, 6lmodvscl 19645 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝐵)
3229, 18, 30, 31syl3anc 1367 . . . 4 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝐵)
3325fvconst2 6960 . . . 4 ((𝑥( ·𝑠𝑀)𝑦) ∈ 𝐵 → ((𝐵 × { 0 })‘(𝑥( ·𝑠𝑀)𝑦)) = 0 )
3432, 33syl 17 . . 3 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → ((𝐵 × { 0 })‘(𝑥( ·𝑠𝑀)𝑦)) = 0 )
3524, 28, 343eqtr4rd 2867 . 2 (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦𝐵)) → ((𝐵 × { 0 })‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)((𝐵 × { 0 })‘𝑦)))
361, 2, 3, 4, 5, 6, 7, 8, 10, 16, 35islmhmd 19805 1 ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  {csn 4560   × cxp 5547  cfv 6349  (class class class)co 7150  Basecbs 16477  Scalarcsca 16562   ·𝑠 cvsca 16563  0gc0g 16707  Grpcgrp 18097   GrpHom cghm 18349  LModclmod 19628   LMHom clmhm 19785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-grp 18100  df-ghm 18350  df-mgp 19234  df-ring 19293  df-lmod 19630  df-lmhm 19788
This theorem is referenced by:  0nmhm  23358  mendring  39785
  Copyright terms: Public domain W3C validator