MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0lt1sr Structured version   Visualization version   GIF version

Theorem 0lt1sr 10108
Description: 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
0lt1sr 0R <R 1R

Proof of Theorem 0lt1sr
StepHypRef Expression
1 1pr 10029 . . . . . 6 1PP
2 addclpr 10032 . . . . . 6 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
31, 1, 2mp2an 710 . . . . 5 (1P +P 1P) ∈ P
4 ltaddpr 10048 . . . . 5 (((1P +P 1P) ∈ P ∧ 1PP) → (1P +P 1P)<P ((1P +P 1P) +P 1P))
53, 1, 4mp2an 710 . . . 4 (1P +P 1P)<P ((1P +P 1P) +P 1P)
6 addcompr 10035 . . . 4 (1P +P (1P +P 1P)) = ((1P +P 1P) +P 1P)
75, 6breqtrri 4831 . . 3 (1P +P 1P)<P (1P +P (1P +P 1P))
8 ltsrpr 10090 . . 3 ([⟨1P, 1P⟩] ~R <R [⟨(1P +P 1P), 1P⟩] ~R ↔ (1P +P 1P)<P (1P +P (1P +P 1P)))
97, 8mpbir 221 . 2 [⟨1P, 1P⟩] ~R <R [⟨(1P +P 1P), 1P⟩] ~R
10 df-0r 10074 . 2 0R = [⟨1P, 1P⟩] ~R
11 df-1r 10075 . 2 1R = [⟨(1P +P 1P), 1P⟩] ~R
129, 10, 113brtr4i 4834 1 0R <R 1R
Colors of variables: wff setvar class
Syntax hints:  wcel 2139  cop 4327   class class class wbr 4804  (class class class)co 6813  [cec 7909  Pcnp 9873  1Pc1p 9874   +P cpp 9875  <P cltp 9877   ~R cer 9878  0Rc0r 9880  1Rc1r 9881   <R cltr 9885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-omul 7734  df-er 7911  df-ec 7913  df-qs 7917  df-ni 9886  df-pli 9887  df-mi 9888  df-lti 9889  df-plpq 9922  df-mpq 9923  df-ltpq 9924  df-enq 9925  df-nq 9926  df-erq 9927  df-plq 9928  df-mq 9929  df-1nq 9930  df-rq 9931  df-ltnq 9932  df-np 9995  df-1p 9996  df-plp 9997  df-ltp 9999  df-enr 10069  df-nr 10070  df-ltr 10073  df-0r 10074  df-1r 10075
This theorem is referenced by:  1ne0sr  10109  supsrlem  10124
  Copyright terms: Public domain W3C validator