MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0mnnnnn0 Structured version   Visualization version   GIF version

Theorem 0mnnnnn0 11363
Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
Assertion
Ref Expression
0mnnnnn0 (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0)

Proof of Theorem 0mnnnnn0
StepHypRef Expression
1 0re 10078 . 2 0 ∈ ℝ
2 nnel 2935 . . 3 (¬ (0 − 𝑁) ∉ ℕ0 ↔ (0 − 𝑁) ∈ ℕ0)
3 df-neg 10307 . . . . . 6 -𝑁 = (0 − 𝑁)
43eqcomi 2660 . . . . 5 (0 − 𝑁) = -𝑁
54eleq1i 2721 . . . 4 ((0 − 𝑁) ∈ ℕ0 ↔ -𝑁 ∈ ℕ0)
6 nn0ge0 11356 . . . . 5 (-𝑁 ∈ ℕ0 → 0 ≤ -𝑁)
7 nnre 11065 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
87le0neg1d 10637 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁))
9 nngt0 11087 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 𝑁)
10 0red 10079 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ∈ ℝ)
1110, 7ltnled 10222 . . . . . . . 8 (𝑁 ∈ ℕ → (0 < 𝑁 ↔ ¬ 𝑁 ≤ 0))
12 pm2.21 120 . . . . . . . 8 𝑁 ≤ 0 → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ))
1311, 12syl6bi 243 . . . . . . 7 (𝑁 ∈ ℕ → (0 < 𝑁 → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ)))
149, 13mpd 15 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ))
158, 14sylbird 250 . . . . 5 (𝑁 ∈ ℕ → (0 ≤ -𝑁 → ¬ 0 ∈ ℝ))
166, 15syl5 34 . . . 4 (𝑁 ∈ ℕ → (-𝑁 ∈ ℕ0 → ¬ 0 ∈ ℝ))
175, 16syl5bi 232 . . 3 (𝑁 ∈ ℕ → ((0 − 𝑁) ∈ ℕ0 → ¬ 0 ∈ ℝ))
182, 17syl5bi 232 . 2 (𝑁 ∈ ℕ → (¬ (0 − 𝑁) ∉ ℕ0 → ¬ 0 ∈ ℝ))
191, 18mt4i 153 1 (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2030  wnel 2926   class class class wbr 4685  (class class class)co 6690  cr 9973  0cc0 9974   < clt 10112  cle 10113  cmin 10304  -cneg 10305  cn 11058  0cn0 11330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator