MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelop Structured version   Visualization version   GIF version

Theorem 0nelop 4920
Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
0nelop ¬ ∅ ∈ ⟨𝐴, 𝐵

Proof of Theorem 0nelop
StepHypRef Expression
1 id 22 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ∈ ⟨𝐴, 𝐵⟩)
2 oprcl 4395 . . . . 5 (∅ ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 dfopg 4368 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
42, 3syl 17 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
51, 4eleqtrd 2700 . . 3 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ∈ {{𝐴}, {𝐴, 𝐵}})
6 elpri 4168 . . 3 (∅ ∈ {{𝐴}, {𝐴, 𝐵}} → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
75, 6syl 17 . 2 (∅ ∈ ⟨𝐴, 𝐵⟩ → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
82simpld 475 . . . . . 6 (∅ ∈ ⟨𝐴, 𝐵⟩ → 𝐴 ∈ V)
9 snnzg 4278 . . . . . 6 (𝐴 ∈ V → {𝐴} ≠ ∅)
108, 9syl 17 . . . . 5 (∅ ∈ ⟨𝐴, 𝐵⟩ → {𝐴} ≠ ∅)
1110necomd 2845 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ≠ {𝐴})
12 prnzg 4281 . . . . . 6 (𝐴 ∈ V → {𝐴, 𝐵} ≠ ∅)
138, 12syl 17 . . . . 5 (∅ ∈ ⟨𝐴, 𝐵⟩ → {𝐴, 𝐵} ≠ ∅)
1413necomd 2845 . . . 4 (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ≠ {𝐴, 𝐵})
1511, 14jca 554 . . 3 (∅ ∈ ⟨𝐴, 𝐵⟩ → (∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵}))
16 neanior 2882 . . 3 ((∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵}) ↔ ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
1715, 16sylib 208 . 2 (∅ ∈ ⟨𝐴, 𝐵⟩ → ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵}))
187, 17pm2.65i 185 1 ¬ ∅ ∈ ⟨𝐴, 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  Vcvv 3186  c0 3891  {csn 4148  {cpr 4150  cop 4154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155
This theorem is referenced by:  opwo0id  4921  0nelelxp  5105
  Copyright terms: Public domain W3C validator