MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nsg Structured version   Visualization version   GIF version

Theorem 0nsg 17620
Description: The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
0nsg.z 0 = (0g𝐺)
Assertion
Ref Expression
0nsg (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))

Proof of Theorem 0nsg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nsg.z . . 3 0 = (0g𝐺)
210subg 17600 . 2 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
3 elsni 4185 . . . . . . . . 9 (𝑦 ∈ { 0 } → 𝑦 = 0 )
43ad2antll 764 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝑦 = 0 )
54oveq2d 6651 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐺) 0 ))
6 eqid 2620 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2620 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
86, 7, 1grprid 17434 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺) 0 ) = 𝑥)
98adantrr 752 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g𝐺) 0 ) = 𝑥)
105, 9eqtrd 2654 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g𝐺)𝑦) = 𝑥)
1110oveq1d 6650 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) = (𝑥(-g𝐺)𝑥))
12 eqid 2620 . . . . . . 7 (-g𝐺) = (-g𝐺)
136, 1, 12grpsubid 17480 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(-g𝐺)𝑥) = 0 )
1413adantrr 752 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(-g𝐺)𝑥) = 0 )
1511, 14eqtrd 2654 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) = 0 )
16 ovex 6663 . . . . 5 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ V
1716elsn 4183 . . . 4 (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ { 0 } ↔ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) = 0 )
1815, 17sylibr 224 . . 3 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ { 0 })
1918ralrimivva 2968 . 2 (𝐺 ∈ Grp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ { 0 })
206, 7, 12isnsg3 17609 . 2 ({ 0 } ∈ (NrmSGrp‘𝐺) ↔ ({ 0 } ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ { 0 }))
212, 19, 20sylanbrc 697 1 (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  wral 2909  {csn 4168  cfv 5876  (class class class)co 6635  Basecbs 15838  +gcplusg 15922  0gc0g 16081  Grpcgrp 17403  -gcsg 17405  SubGrpcsubg 17569  NrmSGrpcnsg 17570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-0g 16083  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-grp 17406  df-minusg 17407  df-sbg 17408  df-subg 17572  df-nsg 17573
This theorem is referenced by:  ghmker  17667
  Copyright terms: Public domain W3C validator