MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nsr Structured version   Visualization version   GIF version

Theorem 0nsr 9753
Description: The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
0nsr ¬ ∅ ∈ R

Proof of Theorem 0nsr
StepHypRef Expression
1 eqid 2606 . 2 ∅ = ∅
2 enrer 9739 . . . . . 6 ~R Er (P × P)
3 erdm 7613 . . . . . 6 ( ~R Er (P × P) → dom ~R = (P × P))
42, 3ax-mp 5 . . . . 5 dom ~R = (P × P)
5 elqsn0 7677 . . . . 5 ((dom ~R = (P × P) ∧ ∅ ∈ ((P × P) / ~R )) → ∅ ≠ ∅)
64, 5mpan 701 . . . 4 (∅ ∈ ((P × P) / ~R ) → ∅ ≠ ∅)
7 df-nr 9731 . . . 4 R = ((P × P) / ~R )
86, 7eleq2s 2702 . . 3 (∅ ∈ R → ∅ ≠ ∅)
98necon2bi 2808 . 2 (∅ = ∅ → ¬ ∅ ∈ R)
101, 9ax-mp 5 1 ¬ ∅ ∈ R
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1474  wcel 1976  wne 2776  c0 3870   × cxp 5023  dom cdm 5025   Er wer 7600   / cqs 7602  Pcnp 9534   ~R cer 9539  Rcnr 9540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-1st 7033  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-oadd 7425  df-omul 7426  df-er 7603  df-ec 7605  df-qs 7609  df-ni 9547  df-pli 9548  df-mi 9549  df-lti 9550  df-plpq 9583  df-mpq 9584  df-ltpq 9585  df-enq 9586  df-nq 9587  df-erq 9588  df-plq 9589  df-mq 9590  df-1nq 9591  df-rq 9592  df-ltnq 9593  df-np 9656  df-plp 9658  df-ltp 9660  df-enr 9730  df-nr 9731
This theorem is referenced by:  dmaddsr  9759  dmmulsr  9760  addasssr  9762  mulasssr  9764  distrsr  9765  ltasr  9774
  Copyright terms: Public domain W3C validator