![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ntop | Structured version Visualization version GIF version |
Description: The empty set is not a topology. (Contributed by FL, 1-Jun-2008.) |
Ref | Expression |
---|---|
0ntop | ⊢ ¬ ∅ ∈ Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4027 | . 2 ⊢ ¬ ∅ ∈ ∅ | |
2 | 0opn 20832 | . 2 ⊢ (∅ ∈ Top → ∅ ∈ ∅) | |
3 | 1, 2 | mto 188 | 1 ⊢ ¬ ∅ ∈ Top |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2103 ∅c0 4023 Topctop 20821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-v 3306 df-dif 3683 df-in 3687 df-ss 3694 df-nul 4024 df-pw 4268 df-sn 4286 df-uni 4545 df-top 20822 |
This theorem is referenced by: istps 20861 ordcmp 32673 onint1 32675 kelac1 38052 |
Copyright terms: Public domain | W3C validator |