MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0oo Structured version   Visualization version   GIF version

Theorem 0oo 27493
Description: The zero operator is an operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
0oo.1 𝑋 = (BaseSet‘𝑈)
0oo.2 𝑌 = (BaseSet‘𝑊)
0oo.0 𝑍 = (𝑈 0op 𝑊)
Assertion
Ref Expression
0oo ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋𝑌)

Proof of Theorem 0oo
StepHypRef Expression
1 fvex 6158 . . . . 5 (0vec𝑊) ∈ V
21fconst 6048 . . . 4 (𝑋 × {(0vec𝑊)}):𝑋⟶{(0vec𝑊)}
3 0oo.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
4 eqid 2621 . . . . . 6 (0vec𝑊) = (0vec𝑊)
53, 4nvzcl 27338 . . . . 5 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ 𝑌)
65snssd 4309 . . . 4 (𝑊 ∈ NrmCVec → {(0vec𝑊)} ⊆ 𝑌)
7 fss 6013 . . . 4 (((𝑋 × {(0vec𝑊)}):𝑋⟶{(0vec𝑊)} ∧ {(0vec𝑊)} ⊆ 𝑌) → (𝑋 × {(0vec𝑊)}):𝑋𝑌)
82, 6, 7sylancr 694 . . 3 (𝑊 ∈ NrmCVec → (𝑋 × {(0vec𝑊)}):𝑋𝑌)
98adantl 482 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑋 × {(0vec𝑊)}):𝑋𝑌)
10 0oo.1 . . . 4 𝑋 = (BaseSet‘𝑈)
11 0oo.0 . . . 4 𝑍 = (𝑈 0op 𝑊)
1210, 4, 110ofval 27491 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍 = (𝑋 × {(0vec𝑊)}))
1312feq1d 5987 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑍:𝑋𝑌 ↔ (𝑋 × {(0vec𝑊)}):𝑋𝑌))
149, 13mpbird 247 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wss 3555  {csn 4148   × cxp 5072  wf 5843  cfv 5847  (class class class)co 6604  NrmCVeccnv 27288  BaseSetcba 27290  0veccn0v 27292   0op c0o 27447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-grpo 27196  df-gid 27197  df-ablo 27248  df-vc 27263  df-nv 27296  df-va 27299  df-ba 27300  df-sm 27301  df-0v 27302  df-nmcv 27304  df-0o 27451
This theorem is referenced by:  0lno  27494  nmoo0  27495  nmlno0lem  27497
  Copyright terms: Public domain W3C validator