MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0plef Structured version   Visualization version   GIF version

Theorem 0plef 24200
Description: Two ways to say that the function 𝐹 on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.)
Assertion
Ref Expression
0plef (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹))

Proof of Theorem 0plef
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rge0ssre 12832 . . 3 (0[,)+∞) ⊆ ℝ
2 fss 6520 . . 3 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
31, 2mpan2 687 . 2 (𝐹:ℝ⟶(0[,)+∞) → 𝐹:ℝ⟶ℝ)
4 ffvelrn 6841 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
5 elrege0 12830 . . . . . 6 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
65baib 536 . . . . 5 ((𝐹𝑥) ∈ ℝ → ((𝐹𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹𝑥)))
74, 6syl 17 . . . 4 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹𝑥)))
87ralbidva 3193 . . 3 (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥)))
9 ffn 6507 . . . 4 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
10 ffnfv 6874 . . . . 5 (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞)))
1110baib 536 . . . 4 (𝐹 Fn ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞)))
129, 11syl 17 . . 3 (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞)))
13 0cn 10621 . . . . . . 7 0 ∈ ℂ
14 fnconstg 6560 . . . . . . 7 (0 ∈ ℂ → (ℂ × {0}) Fn ℂ)
1513, 14ax-mp 5 . . . . . 6 (ℂ × {0}) Fn ℂ
16 df-0p 24198 . . . . . . 7 0𝑝 = (ℂ × {0})
1716fneq1i 6443 . . . . . 6 (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ)
1815, 17mpbir 232 . . . . 5 0𝑝 Fn ℂ
1918a1i 11 . . . 4 (𝐹:ℝ⟶ℝ → 0𝑝 Fn ℂ)
20 cnex 10606 . . . . 5 ℂ ∈ V
2120a1i 11 . . . 4 (𝐹:ℝ⟶ℝ → ℂ ∈ V)
22 reex 10616 . . . . 5 ℝ ∈ V
2322a1i 11 . . . 4 (𝐹:ℝ⟶ℝ → ℝ ∈ V)
24 ax-resscn 10582 . . . . 5 ℝ ⊆ ℂ
25 sseqin2 4189 . . . . 5 (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ)
2624, 25mpbi 231 . . . 4 (ℂ ∩ ℝ) = ℝ
27 0pval 24199 . . . . 5 (𝑥 ∈ ℂ → (0𝑝𝑥) = 0)
2827adantl 482 . . . 4 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℂ) → (0𝑝𝑥) = 0)
29 eqidd 2819 . . . 4 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
3019, 9, 21, 23, 26, 28, 29ofrfval 7406 . . 3 (𝐹:ℝ⟶ℝ → (0𝑝r𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥)))
318, 12, 303bitr4d 312 . 2 (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ 0𝑝r𝐹))
323, 31biadanii 818 1 (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  cin 3932  wss 3933  {csn 4557   class class class wbr 5057   × cxp 5546   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  r cofr 7397  cc 10523  cr 10524  0cc0 10525  +∞cpnf 10660  cle 10664  [,)cico 12728  0𝑝c0p 24197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-i2m1 10593  ax-rnegex 10596  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-ofr 7399  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-ico 12732  df-0p 24198
This theorem is referenced by:  itg2i1fseq  24283  itg2addlem  24286  ftc1anclem8  34855
  Copyright terms: Public domain W3C validator