![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0pval | Structured version Visualization version GIF version |
Description: The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014.) |
Ref | Expression |
---|---|
0pval | ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0p 23482 | . . 3 ⊢ 0𝑝 = (ℂ × {0}) | |
2 | 1 | fveq1i 6230 | . 2 ⊢ (0𝑝‘𝐴) = ((ℂ × {0})‘𝐴) |
3 | c0ex 10072 | . . 3 ⊢ 0 ∈ V | |
4 | 3 | fvconst2 6510 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℂ × {0})‘𝐴) = 0) |
5 | 2, 4 | syl5eq 2697 | 1 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 {csn 4210 × cxp 5141 ‘cfv 5926 ℂcc 9972 0cc0 9974 0𝑝c0p 23481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-mulcl 10036 ax-i2m1 10042 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-0p 23482 |
This theorem is referenced by: 0plef 23484 0pledm 23485 itg1ge0 23498 mbfi1fseqlem5 23531 itg2addlem 23570 ne0p 24008 plyeq0lem 24011 plydivlem3 24095 plymul02 30751 dgraa0p 38036 |
Copyright terms: Public domain | W3C validator |