MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ram Structured version   Visualization version   GIF version

Theorem 0ram 16358
Description: The Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
0ram (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < ))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝐹,𝑦   𝑥,𝑉
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem 0ram
Dummy variables 𝑏 𝑑 𝑧 𝑓 𝑐 𝑠 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . 3 (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 0nn0 11915 . . . 4 0 ∈ ℕ0
32a1i 11 . . 3 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → 0 ∈ ℕ0)
4 simpl1 1187 . . 3 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → 𝑅𝑉)
5 simpl3 1189 . . 3 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → 𝐹:𝑅⟶ℕ0)
65frnd 6523 . . . 4 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → ran 𝐹 ⊆ ℕ0)
7 nn0ssz 12006 . . . . . 6 0 ⊆ ℤ
86, 7sstrdi 3981 . . . . 5 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → ran 𝐹 ⊆ ℤ)
95fdmd 6525 . . . . . . 7 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → dom 𝐹 = 𝑅)
10 simpl2 1188 . . . . . . 7 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → 𝑅 ≠ ∅)
119, 10eqnetrd 3085 . . . . . 6 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → dom 𝐹 ≠ ∅)
12 dm0rn0 5797 . . . . . . 7 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
1312necon3bii 3070 . . . . . 6 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
1411, 13sylib 220 . . . . 5 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → ran 𝐹 ≠ ∅)
15 simpr 487 . . . . 5 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥)
16 suprzcl2 12341 . . . . 5 ((ran 𝐹 ⊆ ℤ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
178, 14, 15, 16syl3anc 1367 . . . 4 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
186, 17sseldd 3970 . . 3 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ℕ0)
191hashbc0 16343 . . . . . . 7 (𝑠 ∈ V → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅})
2019elv 3501 . . . . . 6 (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅}
2120feq2i 6508 . . . . 5 (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0)⟶𝑅𝑓:{∅}⟶𝑅)
2221biimpi 218 . . . 4 (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0)⟶𝑅𝑓:{∅}⟶𝑅)
23 simprr 771 . . . . . 6 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → 𝑓:{∅}⟶𝑅)
24 0ex 5213 . . . . . . 7 ∅ ∈ V
2524snid 4603 . . . . . 6 ∅ ∈ {∅}
26 ffvelrn 6851 . . . . . 6 ((𝑓:{∅}⟶𝑅 ∧ ∅ ∈ {∅}) → (𝑓‘∅) ∈ 𝑅)
2723, 25, 26sylancl 588 . . . . 5 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝑓‘∅) ∈ 𝑅)
28 vex 3499 . . . . . . 7 𝑠 ∈ V
2928pwid 4565 . . . . . 6 𝑠 ∈ 𝒫 𝑠
3029a1i 11 . . . . 5 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → 𝑠 ∈ 𝒫 𝑠)
315adantr 483 . . . . . . . . 9 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → 𝐹:𝑅⟶ℕ0)
3231, 27ffvelrnd 6854 . . . . . . . 8 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ∈ ℕ0)
3332nn0red 11959 . . . . . . 7 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ∈ ℝ)
3433rexrd 10693 . . . . . 6 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ∈ ℝ*)
3518nn0red 11959 . . . . . . . 8 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
3635rexrd 10693 . . . . . . 7 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ℝ*)
3736adantr 483 . . . . . 6 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → sup(ran 𝐹, ℝ, < ) ∈ ℝ*)
38 hashxrcl 13721 . . . . . . 7 (𝑠 ∈ V → (♯‘𝑠) ∈ ℝ*)
3928, 38mp1i 13 . . . . . 6 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (♯‘𝑠) ∈ ℝ*)
408adantr 483 . . . . . . 7 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → ran 𝐹 ⊆ ℤ)
4115adantr 483 . . . . . . 7 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥)
4231ffnd 6517 . . . . . . . 8 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → 𝐹 Fn 𝑅)
43 fnfvelrn 6850 . . . . . . . 8 ((𝐹 Fn 𝑅 ∧ (𝑓‘∅) ∈ 𝑅) → (𝐹‘(𝑓‘∅)) ∈ ran 𝐹)
4442, 27, 43syl2anc 586 . . . . . . 7 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ∈ ran 𝐹)
45 suprzub 12342 . . . . . . 7 ((ran 𝐹 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥 ∧ (𝐹‘(𝑓‘∅)) ∈ ran 𝐹) → (𝐹‘(𝑓‘∅)) ≤ sup(ran 𝐹, ℝ, < ))
4640, 41, 44, 45syl3anc 1367 . . . . . 6 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ≤ sup(ran 𝐹, ℝ, < ))
47 simprl 769 . . . . . 6 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠))
4834, 37, 39, 46, 47xrletrd 12558 . . . . 5 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝐹‘(𝑓‘∅)) ≤ (♯‘𝑠))
4925a1i 11 . . . . . 6 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → ∅ ∈ {∅})
50 fvex 6685 . . . . . . . 8 (𝑓‘∅) ∈ V
5150snid 4603 . . . . . . 7 (𝑓‘∅) ∈ {(𝑓‘∅)}
5251a1i 11 . . . . . 6 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (𝑓‘∅) ∈ {(𝑓‘∅)})
53 ffn 6516 . . . . . . 7 (𝑓:{∅}⟶𝑅𝑓 Fn {∅})
54 elpreima 6830 . . . . . . 7 (𝑓 Fn {∅} → (∅ ∈ (𝑓 “ {(𝑓‘∅)}) ↔ (∅ ∈ {∅} ∧ (𝑓‘∅) ∈ {(𝑓‘∅)})))
5523, 53, 543syl 18 . . . . . 6 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → (∅ ∈ (𝑓 “ {(𝑓‘∅)}) ↔ (∅ ∈ {∅} ∧ (𝑓‘∅) ∈ {(𝑓‘∅)})))
5649, 52, 55mpbir2and 711 . . . . 5 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → ∅ ∈ (𝑓 “ {(𝑓‘∅)}))
57 fveq2 6672 . . . . . . . 8 (𝑐 = (𝑓‘∅) → (𝐹𝑐) = (𝐹‘(𝑓‘∅)))
5857breq1d 5078 . . . . . . 7 (𝑐 = (𝑓‘∅) → ((𝐹𝑐) ≤ (♯‘𝑧) ↔ (𝐹‘(𝑓‘∅)) ≤ (♯‘𝑧)))
591hashbc0 16343 . . . . . . . . . . 11 (𝑧 ∈ V → (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅})
6059elv 3501 . . . . . . . . . 10 (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅}
6160sseq1i 3997 . . . . . . . . 9 ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (𝑓 “ {𝑐}) ↔ {∅} ⊆ (𝑓 “ {𝑐}))
6224snss 4720 . . . . . . . . 9 (∅ ∈ (𝑓 “ {𝑐}) ↔ {∅} ⊆ (𝑓 “ {𝑐}))
6361, 62bitr4i 280 . . . . . . . 8 ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (𝑓 “ {𝑐}) ↔ ∅ ∈ (𝑓 “ {𝑐}))
64 sneq 4579 . . . . . . . . . 10 (𝑐 = (𝑓‘∅) → {𝑐} = {(𝑓‘∅)})
6564imaeq2d 5931 . . . . . . . . 9 (𝑐 = (𝑓‘∅) → (𝑓 “ {𝑐}) = (𝑓 “ {(𝑓‘∅)}))
6665eleq2d 2900 . . . . . . . 8 (𝑐 = (𝑓‘∅) → (∅ ∈ (𝑓 “ {𝑐}) ↔ ∅ ∈ (𝑓 “ {(𝑓‘∅)})))
6763, 66syl5bb 285 . . . . . . 7 (𝑐 = (𝑓‘∅) → ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (𝑓 “ {𝑐}) ↔ ∅ ∈ (𝑓 “ {(𝑓‘∅)})))
6858, 67anbi12d 632 . . . . . 6 (𝑐 = (𝑓‘∅) → (((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (𝑓 “ {𝑐})) ↔ ((𝐹‘(𝑓‘∅)) ≤ (♯‘𝑧) ∧ ∅ ∈ (𝑓 “ {(𝑓‘∅)}))))
69 fveq2 6672 . . . . . . . 8 (𝑧 = 𝑠 → (♯‘𝑧) = (♯‘𝑠))
7069breq2d 5080 . . . . . . 7 (𝑧 = 𝑠 → ((𝐹‘(𝑓‘∅)) ≤ (♯‘𝑧) ↔ (𝐹‘(𝑓‘∅)) ≤ (♯‘𝑠)))
7170anbi1d 631 . . . . . 6 (𝑧 = 𝑠 → (((𝐹‘(𝑓‘∅)) ≤ (♯‘𝑧) ∧ ∅ ∈ (𝑓 “ {(𝑓‘∅)})) ↔ ((𝐹‘(𝑓‘∅)) ≤ (♯‘𝑠) ∧ ∅ ∈ (𝑓 “ {(𝑓‘∅)}))))
7268, 71rspc2ev 3637 . . . . 5 (((𝑓‘∅) ∈ 𝑅𝑠 ∈ 𝒫 𝑠 ∧ ((𝐹‘(𝑓‘∅)) ≤ (♯‘𝑠) ∧ ∅ ∈ (𝑓 “ {(𝑓‘∅)}))) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (𝑓 “ {𝑐})))
7327, 30, 48, 56, 72syl112anc 1370 . . . 4 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:{∅}⟶𝑅)) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (𝑓 “ {𝑐})))
7422, 73sylanr2 681 . . 3 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0)⟶𝑅)) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ (𝑓 “ {𝑐})))
751, 3, 4, 5, 18, 74ramub 16351 . 2 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → (0 Ramsey 𝐹) ≤ sup(ran 𝐹, ℝ, < ))
76 ffn 6516 . . . . 5 (𝐹:𝑅⟶ℕ0𝐹 Fn 𝑅)
77 fvelrnb 6728 . . . . 5 (𝐹 Fn 𝑅 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ↔ ∃𝑐𝑅 (𝐹𝑐) = sup(ran 𝐹, ℝ, < )))
785, 76, 773syl 18 . . . 4 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ↔ ∃𝑐𝑅 (𝐹𝑐) = sup(ran 𝐹, ℝ, < )))
7917, 78mpbid 234 . . 3 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → ∃𝑐𝑅 (𝐹𝑐) = sup(ran 𝐹, ℝ, < ))
802a1i 11 . . . . . . . . 9 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) → 0 ∈ ℕ0)
81 simpll1 1208 . . . . . . . . 9 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) → 𝑅𝑉)
82 simpll3 1210 . . . . . . . . 9 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) → 𝐹:𝑅⟶ℕ0)
83 nnm1nn0 11941 . . . . . . . . . 10 ((𝐹𝑐) ∈ ℕ → ((𝐹𝑐) − 1) ∈ ℕ0)
8483ad2antll 727 . . . . . . . . 9 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) → ((𝐹𝑐) − 1) ∈ ℕ0)
85 vex 3499 . . . . . . . . . . . . 13 𝑐 ∈ V
8624, 85f1osn 6656 . . . . . . . . . . . 12 {⟨∅, 𝑐⟩}:{∅}–1-1-onto→{𝑐}
87 f1of 6617 . . . . . . . . . . . 12 ({⟨∅, 𝑐⟩}:{∅}–1-1-onto→{𝑐} → {⟨∅, 𝑐⟩}:{∅}⟶{𝑐})
8886, 87ax-mp 5 . . . . . . . . . . 11 {⟨∅, 𝑐⟩}:{∅}⟶{𝑐}
89 simprl 769 . . . . . . . . . . . 12 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) → 𝑐𝑅)
9089snssd 4744 . . . . . . . . . . 11 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) → {𝑐} ⊆ 𝑅)
91 fss 6529 . . . . . . . . . . 11 (({⟨∅, 𝑐⟩}:{∅}⟶{𝑐} ∧ {𝑐} ⊆ 𝑅) → {⟨∅, 𝑐⟩}:{∅}⟶𝑅)
9288, 90, 91sylancr 589 . . . . . . . . . 10 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) → {⟨∅, 𝑐⟩}:{∅}⟶𝑅)
93 ovex 7191 . . . . . . . . . . . 12 (1...((𝐹𝑐) − 1)) ∈ V
941hashbc0 16343 . . . . . . . . . . . 12 ((1...((𝐹𝑐) − 1)) ∈ V → ((1...((𝐹𝑐) − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅})
9593, 94ax-mp 5 . . . . . . . . . . 11 ((1...((𝐹𝑐) − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) = {∅}
9695feq2i 6508 . . . . . . . . . 10 ({⟨∅, 𝑐⟩}:((1...((𝐹𝑐) − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0)⟶𝑅 ↔ {⟨∅, 𝑐⟩}:{∅}⟶𝑅)
9792, 96sylibr 236 . . . . . . . . 9 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) → {⟨∅, 𝑐⟩}:((1...((𝐹𝑐) − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0)⟶𝑅)
9860sseq1i 3997 . . . . . . . . . . 11 ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ ({⟨∅, 𝑐⟩} “ {𝑑}) ↔ {∅} ⊆ ({⟨∅, 𝑐⟩} “ {𝑑}))
9924snss 4720 . . . . . . . . . . 11 (∅ ∈ ({⟨∅, 𝑐⟩} “ {𝑑}) ↔ {∅} ⊆ ({⟨∅, 𝑐⟩} “ {𝑑}))
10098, 99bitr4i 280 . . . . . . . . . 10 ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ ({⟨∅, 𝑐⟩} “ {𝑑}) ↔ ∅ ∈ ({⟨∅, 𝑐⟩} “ {𝑑}))
101 fzfid 13344 . . . . . . . . . . . . . . 15 (((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) ∧ (𝑑𝑅𝑧 ⊆ (1...((𝐹𝑐) − 1)))) → (1...((𝐹𝑐) − 1)) ∈ Fin)
102 simprr 771 . . . . . . . . . . . . . . 15 (((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) ∧ (𝑑𝑅𝑧 ⊆ (1...((𝐹𝑐) − 1)))) → 𝑧 ⊆ (1...((𝐹𝑐) − 1)))
103 ssdomg 8557 . . . . . . . . . . . . . . 15 ((1...((𝐹𝑐) − 1)) ∈ Fin → (𝑧 ⊆ (1...((𝐹𝑐) − 1)) → 𝑧 ≼ (1...((𝐹𝑐) − 1))))
104101, 102, 103sylc 65 . . . . . . . . . . . . . 14 (((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) ∧ (𝑑𝑅𝑧 ⊆ (1...((𝐹𝑐) − 1)))) → 𝑧 ≼ (1...((𝐹𝑐) − 1)))
105101, 102ssfid 8743 . . . . . . . . . . . . . . 15 (((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) ∧ (𝑑𝑅𝑧 ⊆ (1...((𝐹𝑐) − 1)))) → 𝑧 ∈ Fin)
106 hashdom 13743 . . . . . . . . . . . . . . 15 ((𝑧 ∈ Fin ∧ (1...((𝐹𝑐) − 1)) ∈ Fin) → ((♯‘𝑧) ≤ (♯‘(1...((𝐹𝑐) − 1))) ↔ 𝑧 ≼ (1...((𝐹𝑐) − 1))))
107105, 101, 106syl2anc 586 . . . . . . . . . . . . . 14 (((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) ∧ (𝑑𝑅𝑧 ⊆ (1...((𝐹𝑐) − 1)))) → ((♯‘𝑧) ≤ (♯‘(1...((𝐹𝑐) − 1))) ↔ 𝑧 ≼ (1...((𝐹𝑐) − 1))))
108104, 107mpbird 259 . . . . . . . . . . . . 13 (((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) ∧ (𝑑𝑅𝑧 ⊆ (1...((𝐹𝑐) − 1)))) → (♯‘𝑧) ≤ (♯‘(1...((𝐹𝑐) − 1))))
10984adantr 483 . . . . . . . . . . . . . 14 (((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) ∧ (𝑑𝑅𝑧 ⊆ (1...((𝐹𝑐) − 1)))) → ((𝐹𝑐) − 1) ∈ ℕ0)
110 hashfz1 13709 . . . . . . . . . . . . . 14 (((𝐹𝑐) − 1) ∈ ℕ0 → (♯‘(1...((𝐹𝑐) − 1))) = ((𝐹𝑐) − 1))
111109, 110syl 17 . . . . . . . . . . . . 13 (((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) ∧ (𝑑𝑅𝑧 ⊆ (1...((𝐹𝑐) − 1)))) → (♯‘(1...((𝐹𝑐) − 1))) = ((𝐹𝑐) − 1))
112108, 111breqtrd 5094 . . . . . . . . . . . 12 (((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) ∧ (𝑑𝑅𝑧 ⊆ (1...((𝐹𝑐) − 1)))) → (♯‘𝑧) ≤ ((𝐹𝑐) − 1))
113 hashcl 13720 . . . . . . . . . . . . . 14 (𝑧 ∈ Fin → (♯‘𝑧) ∈ ℕ0)
114105, 113syl 17 . . . . . . . . . . . . 13 (((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) ∧ (𝑑𝑅𝑧 ⊆ (1...((𝐹𝑐) − 1)))) → (♯‘𝑧) ∈ ℕ0)
1155ffvelrnda 6853 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ 𝑐𝑅) → (𝐹𝑐) ∈ ℕ0)
116115adantrr 715 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) → (𝐹𝑐) ∈ ℕ0)
117116adantr 483 . . . . . . . . . . . . 13 (((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) ∧ (𝑑𝑅𝑧 ⊆ (1...((𝐹𝑐) − 1)))) → (𝐹𝑐) ∈ ℕ0)
118 nn0ltlem1 12045 . . . . . . . . . . . . 13 (((♯‘𝑧) ∈ ℕ0 ∧ (𝐹𝑐) ∈ ℕ0) → ((♯‘𝑧) < (𝐹𝑐) ↔ (♯‘𝑧) ≤ ((𝐹𝑐) − 1)))
119114, 117, 118syl2anc 586 . . . . . . . . . . . 12 (((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) ∧ (𝑑𝑅𝑧 ⊆ (1...((𝐹𝑐) − 1)))) → ((♯‘𝑧) < (𝐹𝑐) ↔ (♯‘𝑧) ≤ ((𝐹𝑐) − 1)))
120112, 119mpbird 259 . . . . . . . . . . 11 (((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) ∧ (𝑑𝑅𝑧 ⊆ (1...((𝐹𝑐) − 1)))) → (♯‘𝑧) < (𝐹𝑐))
12124, 85fvsn 6945 . . . . . . . . . . . . . . 15 ({⟨∅, 𝑐⟩}‘∅) = 𝑐
122 f1ofn 6618 . . . . . . . . . . . . . . . . 17 ({⟨∅, 𝑐⟩}:{∅}–1-1-onto→{𝑐} → {⟨∅, 𝑐⟩} Fn {∅})
123 elpreima 6830 . . . . . . . . . . . . . . . . 17 ({⟨∅, 𝑐⟩} Fn {∅} → (∅ ∈ ({⟨∅, 𝑐⟩} “ {𝑑}) ↔ (∅ ∈ {∅} ∧ ({⟨∅, 𝑐⟩}‘∅) ∈ {𝑑})))
12486, 122, 123mp2b 10 . . . . . . . . . . . . . . . 16 (∅ ∈ ({⟨∅, 𝑐⟩} “ {𝑑}) ↔ (∅ ∈ {∅} ∧ ({⟨∅, 𝑐⟩}‘∅) ∈ {𝑑}))
125124simprbi 499 . . . . . . . . . . . . . . 15 (∅ ∈ ({⟨∅, 𝑐⟩} “ {𝑑}) → ({⟨∅, 𝑐⟩}‘∅) ∈ {𝑑})
126121, 125eqeltrrid 2920 . . . . . . . . . . . . . 14 (∅ ∈ ({⟨∅, 𝑐⟩} “ {𝑑}) → 𝑐 ∈ {𝑑})
127 elsni 4586 . . . . . . . . . . . . . 14 (𝑐 ∈ {𝑑} → 𝑐 = 𝑑)
128126, 127syl 17 . . . . . . . . . . . . 13 (∅ ∈ ({⟨∅, 𝑐⟩} “ {𝑑}) → 𝑐 = 𝑑)
129128fveq2d 6676 . . . . . . . . . . . 12 (∅ ∈ ({⟨∅, 𝑐⟩} “ {𝑑}) → (𝐹𝑐) = (𝐹𝑑))
130129breq2d 5080 . . . . . . . . . . 11 (∅ ∈ ({⟨∅, 𝑐⟩} “ {𝑑}) → ((♯‘𝑧) < (𝐹𝑐) ↔ (♯‘𝑧) < (𝐹𝑑)))
131120, 130syl5ibcom 247 . . . . . . . . . 10 (((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) ∧ (𝑑𝑅𝑧 ⊆ (1...((𝐹𝑐) − 1)))) → (∅ ∈ ({⟨∅, 𝑐⟩} “ {𝑑}) → (♯‘𝑧) < (𝐹𝑑)))
132100, 131syl5bi 244 . . . . . . . . 9 (((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) ∧ (𝑑𝑅𝑧 ⊆ (1...((𝐹𝑐) − 1)))) → ((𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})0) ⊆ ({⟨∅, 𝑐⟩} “ {𝑑}) → (♯‘𝑧) < (𝐹𝑑)))
1331, 80, 81, 82, 84, 97, 132ramlb 16357 . . . . . . . 8 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) → ((𝐹𝑐) − 1) < (0 Ramsey 𝐹))
134 ramubcl 16356 . . . . . . . . . . 11 (((0 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (sup(ran 𝐹, ℝ, < ) ∈ ℕ0 ∧ (0 Ramsey 𝐹) ≤ sup(ran 𝐹, ℝ, < ))) → (0 Ramsey 𝐹) ∈ ℕ0)
1353, 4, 5, 18, 75, 134syl32anc 1374 . . . . . . . . . 10 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → (0 Ramsey 𝐹) ∈ ℕ0)
136135adantr 483 . . . . . . . . 9 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) → (0 Ramsey 𝐹) ∈ ℕ0)
137 nn0lem1lt 12050 . . . . . . . . 9 (((𝐹𝑐) ∈ ℕ0 ∧ (0 Ramsey 𝐹) ∈ ℕ0) → ((𝐹𝑐) ≤ (0 Ramsey 𝐹) ↔ ((𝐹𝑐) − 1) < (0 Ramsey 𝐹)))
138116, 136, 137syl2anc 586 . . . . . . . 8 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) → ((𝐹𝑐) ≤ (0 Ramsey 𝐹) ↔ ((𝐹𝑐) − 1) < (0 Ramsey 𝐹)))
139133, 138mpbird 259 . . . . . . 7 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝑐𝑅 ∧ (𝐹𝑐) ∈ ℕ)) → (𝐹𝑐) ≤ (0 Ramsey 𝐹))
140139expr 459 . . . . . 6 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ 𝑐𝑅) → ((𝐹𝑐) ∈ ℕ → (𝐹𝑐) ≤ (0 Ramsey 𝐹)))
141135adantr 483 . . . . . . . 8 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ 𝑐𝑅) → (0 Ramsey 𝐹) ∈ ℕ0)
142141nn0ge0d 11961 . . . . . . 7 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ 𝑐𝑅) → 0 ≤ (0 Ramsey 𝐹))
143 breq1 5071 . . . . . . 7 ((𝐹𝑐) = 0 → ((𝐹𝑐) ≤ (0 Ramsey 𝐹) ↔ 0 ≤ (0 Ramsey 𝐹)))
144142, 143syl5ibrcom 249 . . . . . 6 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ 𝑐𝑅) → ((𝐹𝑐) = 0 → (𝐹𝑐) ≤ (0 Ramsey 𝐹)))
145 elnn0 11902 . . . . . . 7 ((𝐹𝑐) ∈ ℕ0 ↔ ((𝐹𝑐) ∈ ℕ ∨ (𝐹𝑐) = 0))
146115, 145sylib 220 . . . . . 6 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ 𝑐𝑅) → ((𝐹𝑐) ∈ ℕ ∨ (𝐹𝑐) = 0))
147140, 144, 146mpjaod 856 . . . . 5 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ 𝑐𝑅) → (𝐹𝑐) ≤ (0 Ramsey 𝐹))
148 breq1 5071 . . . . 5 ((𝐹𝑐) = sup(ran 𝐹, ℝ, < ) → ((𝐹𝑐) ≤ (0 Ramsey 𝐹) ↔ sup(ran 𝐹, ℝ, < ) ≤ (0 Ramsey 𝐹)))
149147, 148syl5ibcom 247 . . . 4 ((((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ 𝑐𝑅) → ((𝐹𝑐) = sup(ran 𝐹, ℝ, < ) → sup(ran 𝐹, ℝ, < ) ≤ (0 Ramsey 𝐹)))
150149rexlimdva 3286 . . 3 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → (∃𝑐𝑅 (𝐹𝑐) = sup(ran 𝐹, ℝ, < ) → sup(ran 𝐹, ℝ, < ) ≤ (0 Ramsey 𝐹)))
15179, 150mpd 15 . 2 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → sup(ran 𝐹, ℝ, < ) ≤ (0 Ramsey 𝐹))
152135nn0red 11959 . . 3 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → (0 Ramsey 𝐹) ∈ ℝ)
153152, 35letri3d 10784 . 2 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → ((0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < ) ↔ ((0 Ramsey 𝐹) ≤ sup(ran 𝐹, ℝ, < ) ∧ sup(ran 𝐹, ℝ, < ) ≤ (0 Ramsey 𝐹))))
15475, 151, 153mpbir2and 711 1 (((𝑅𝑉𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569  cop 4575   class class class wbr 5068  ccnv 5556  dom cdm 5557  ran crn 5558  cima 5560   Fn wfn 6352  wf 6353  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  cmpo 7160  cdom 8509  Fincfn 8511  supcsup 8906  cr 10538  0cc0 10539  1c1 10540  *cxr 10676   < clt 10677  cle 10678  cmin 10872  cn 11640  0cn0 11900  cz 11984  ...cfz 12895  chash 13693   Ramsey cram 16337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694  df-ram 16339
This theorem is referenced by:  0ram2  16359  ramz  16363
  Copyright terms: Public domain W3C validator