MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0subcat Structured version   Visualization version   GIF version

Theorem 0subcat 17110
Description: For any category 𝐶, the empty set is a (full) subcategory of 𝐶, see example 4.3(1.a) in [Adamek] p. 48. (Contributed by AV, 23-Apr-2020.)
Assertion
Ref Expression
0subcat (𝐶 ∈ Cat → ∅ ∈ (Subcat‘𝐶))

Proof of Theorem 0subcat
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ssc 17109 . 2 (𝐶 ∈ Cat → ∅ ⊆cat (Homf𝐶))
2 ral0 4458 . . 3 𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑧))
32a1i 11 . 2 (𝐶 ∈ Cat → ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑧)))
4 eqid 2823 . . 3 (Homf𝐶) = (Homf𝐶)
5 eqid 2823 . . 3 (Id‘𝐶) = (Id‘𝐶)
6 eqid 2823 . . 3 (comp‘𝐶) = (comp‘𝐶)
7 id 22 . . 3 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
8 f0 6562 . . . . . 6 ∅:∅⟶∅
9 ffn 6516 . . . . . 6 (∅:∅⟶∅ → ∅ Fn ∅)
108, 9ax-mp 5 . . . . 5 ∅ Fn ∅
11 0xp 5651 . . . . . 6 (∅ × ∅) = ∅
1211fneq2i 6453 . . . . 5 (∅ Fn (∅ × ∅) ↔ ∅ Fn ∅)
1310, 12mpbir 233 . . . 4 ∅ Fn (∅ × ∅)
1413a1i 11 . . 3 (𝐶 ∈ Cat → ∅ Fn (∅ × ∅))
154, 5, 6, 7, 14issubc2 17108 . 2 (𝐶 ∈ Cat → (∅ ∈ (Subcat‘𝐶) ↔ (∅ ⊆cat (Homf𝐶) ∧ ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑧)))))
161, 3, 15mpbir2and 711 1 (𝐶 ∈ Cat → ∅ ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wral 3140  c0 4293  cop 4575   class class class wbr 5068   × cxp 5555   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  compcco 16579  Catccat 16937  Idccid 16938  Homf chomf 16939  cat cssc 17079  Subcatcsubc 17081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-pm 8411  df-ixp 8464  df-homf 16943  df-ssc 17082  df-subc 17084
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator