MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0top Structured version   Visualization version   GIF version

Theorem 0top 20960
Description: The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006.)
Assertion
Ref Expression
0top (𝐽 ∈ Top → ( 𝐽 = ∅ ↔ 𝐽 = {∅}))

Proof of Theorem 0top
StepHypRef Expression
1 olc 398 . . 3 (𝐽 = {∅} → (𝐽 = ∅ ∨ 𝐽 = {∅}))
2 0opn 20882 . . . . . 6 (𝐽 ∈ Top → ∅ ∈ 𝐽)
3 n0i 4051 . . . . . 6 (∅ ∈ 𝐽 → ¬ 𝐽 = ∅)
42, 3syl 17 . . . . 5 (𝐽 ∈ Top → ¬ 𝐽 = ∅)
54pm2.21d 118 . . . 4 (𝐽 ∈ Top → (𝐽 = ∅ → 𝐽 = {∅}))
6 idd 24 . . . 4 (𝐽 ∈ Top → (𝐽 = {∅} → 𝐽 = {∅}))
75, 6jaod 394 . . 3 (𝐽 ∈ Top → ((𝐽 = ∅ ∨ 𝐽 = {∅}) → 𝐽 = {∅}))
81, 7impbid2 216 . 2 (𝐽 ∈ Top → (𝐽 = {∅} ↔ (𝐽 = ∅ ∨ 𝐽 = {∅})))
9 uni0b 4603 . . 3 ( 𝐽 = ∅ ↔ 𝐽 ⊆ {∅})
10 sssn 4491 . . 3 (𝐽 ⊆ {∅} ↔ (𝐽 = ∅ ∨ 𝐽 = {∅}))
119, 10bitr2i 265 . 2 ((𝐽 = ∅ ∨ 𝐽 = {∅}) ↔ 𝐽 = ∅)
128, 11syl6rbb 277 1 (𝐽 ∈ Top → ( 𝐽 = ∅ ↔ 𝐽 = {∅}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382   = wceq 1620  wcel 2127  wss 3703  c0 4046  {csn 4309   cuni 4576  Topctop 20871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ral 3043  df-rex 3044  df-v 3330  df-dif 3706  df-in 3710  df-ss 3717  df-nul 4047  df-pw 4292  df-sn 4310  df-uni 4577  df-top 20872
This theorem is referenced by:  locfinref  30188
  Copyright terms: Public domain W3C validator