MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0vtxrusgr Structured version   Visualization version   GIF version

Theorem 0vtxrusgr 27362
Description: A graph with no vertices and an empty edge function is a k-regular simple graph for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Assertion
Ref Expression
0vtxrusgr ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegUSGraph 𝑘)
Distinct variable groups:   𝑘,𝐺   𝑘,𝑊

Proof of Theorem 0vtxrusgr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 usgr0v 27026 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph)
21adantr 483 . . 3 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝐺 ∈ USGraph)
3 0vtxrgr 27361 . . . . . 6 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑣 ∈ ℕ0* 𝐺 RegGraph 𝑣)
4 breq2 5073 . . . . . . 7 (𝑣 = 𝑘 → (𝐺 RegGraph 𝑣𝐺 RegGraph 𝑘))
54rspccv 3623 . . . . . 6 (∀𝑣 ∈ ℕ0* 𝐺 RegGraph 𝑣 → (𝑘 ∈ ℕ0*𝐺 RegGraph 𝑘))
63, 5syl 17 . . . . 5 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝑘 ∈ ℕ0*𝐺 RegGraph 𝑘))
763adant3 1128 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → (𝑘 ∈ ℕ0*𝐺 RegGraph 𝑘))
87imp 409 . . 3 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝐺 RegGraph 𝑘)
9 isrusgr 27346 . . . 4 ((𝐺𝑊𝑘 ∈ ℕ0*) → (𝐺 RegUSGraph 𝑘 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝑘)))
1093ad2antl1 1181 . . 3 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → (𝐺 RegUSGraph 𝑘 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝑘)))
112, 8, 10mpbir2and 711 . 2 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝐺 RegUSGraph 𝑘)
1211ralrimiva 3185 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegUSGraph 𝑘)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  c0 4294   class class class wbr 5069  cfv 6358  0*cxnn0 11970  Vtxcvtx 26784  iEdgciedg 26785  USGraphcusgr 26937   RegGraph crgr 27340   RegUSGraph crusgr 27341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-i2m1 10608  ax-1ne0 10609  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-2 11703  df-uhgr 26846  df-upgr 26870  df-uspgr 26938  df-usgr 26939  df-rgr 27342  df-rusgr 27343
This theorem is referenced by:  0uhgrrusgr  27363  0grrusgr  27364
  Copyright terms: Public domain W3C validator