MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.12vvv Structured version   Visualization version   GIF version

Theorem 19.12vvv 1904
Description: Version of 19.12vv 2179 with a dv condition, requiring fewer axioms. See also 19.12 2161. (Contributed by BJ, 18-Mar-2020.)
Assertion
Ref Expression
19.12vvv (∃𝑥𝑦(𝜑𝜓) ↔ ∀𝑦𝑥(𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem 19.12vvv
StepHypRef Expression
1 19.21v 1865 . . 3 (∀𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑦𝜓))
21exbii 1771 . 2 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 → ∀𝑦𝜓))
3 19.36v 1901 . 2 (∃𝑥(𝜑 → ∀𝑦𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓))
4 19.36v 1901 . . . 4 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
54albii 1744 . . 3 (∀𝑦𝑥(𝜑𝜓) ↔ ∀𝑦(∀𝑥𝜑𝜓))
6 19.21v 1865 . . 3 (∀𝑦(∀𝑥𝜑𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓))
75, 6bitr2i 265 . 2 ((∀𝑥𝜑 → ∀𝑦𝜓) ↔ ∀𝑦𝑥(𝜑𝜓))
82, 3, 73bitri 286 1 (∃𝑥𝑦(𝜑𝜓) ↔ ∀𝑦𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1478  wex 1701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885
This theorem depends on definitions:  df-bi 197  df-ex 1702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator