MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.21 Structured version   Visualization version   GIF version

Theorem 19.21 2113
Description: Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑." See 19.21v 1908 for a version requiring fewer axioms. See also 19.21h 2159. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) df-nf 1750 changed. (Revised by Wolf Lammen, 18-Sep-2021.)
Hypothesis
Ref Expression
19.21.1 𝑥𝜑
Assertion
Ref Expression
19.21 (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))

Proof of Theorem 19.21
StepHypRef Expression
1 19.21.1 . 2 𝑥𝜑
2 19.21t 2111 . 2 (Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
31, 2ax-mp 5 1 (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1521  wnf 1748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-12 2087
This theorem depends on definitions:  df-bi 197  df-ex 1745  df-nf 1750
This theorem is referenced by:  stdpc5  2114  19.21-2  2116  19.32  2139  nf6  2155  19.21h  2159  19.12vv  2216  cbv1  2303  axc14  2400  r2alf  2967  19.12b  31831  bj-biexal2  32822  bj-bialal  32824  bj-cbv1v  32854  wl-dral1d  33448  mpt2bi123f  34101
  Copyright terms: Public domain W3C validator