MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.35i Structured version   Visualization version   GIF version

Theorem 19.35i 1794
Description: Inference associated with 19.35 1793. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
19.35i.1 𝑥(𝜑𝜓)
Assertion
Ref Expression
19.35i (∀𝑥𝜑 → ∃𝑥𝜓)

Proof of Theorem 19.35i
StepHypRef Expression
1 19.35i.1 . 2 𝑥(𝜑𝜓)
2 19.35 1793 . 2 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
31, 2mpbi 218 1 (∀𝑥𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1472  wex 1694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727
This theorem depends on definitions:  df-bi 195  df-ex 1695
This theorem is referenced by:  19.2  1878  spimeh  1911  cbv3hvOLD  2160  cbv3hvOLDOLD  2161  ax6e  2237  spimed  2242  equvini  2333  equvel  2334  euex  2481  axrep4  4697  zfcndrep  9292  bj-ax6elem2  31634  bj-spimedv  31699  bj-axrep4  31772  wl-exeq  32283
  Copyright terms: Public domain W3C validator