MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.36 Structured version   Visualization version   GIF version

Theorem 19.36 2093
Description: Theorem 19.36 of [Margaris] p. 90. See 19.36v 1854 for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993.)
Hypothesis
Ref Expression
19.36.1 𝑥𝜓
Assertion
Ref Expression
19.36 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))

Proof of Theorem 19.36
StepHypRef Expression
1 19.35 1775 . 2 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
2 19.36.1 . . . 4 𝑥𝜓
3219.9 2022 . . 3 (∃𝑥𝜓𝜓)
43imbi2i 324 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (∀𝑥𝜑𝜓))
51, 4bitri 262 1 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wal 1472  wex 1694  wnf 1698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-12 1983
This theorem depends on definitions:  df-bi 195  df-ex 1695  df-nf 1699
This theorem is referenced by:  19.36i  2094  19.12vv  2123  spcimgft  3161  19.12b  30797
  Copyright terms: Public domain W3C validator