MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.36imv Structured version   Visualization version   GIF version

Theorem 19.36imv 2018
Description: One direction of 19.36v 2065 that can be proven without ax-6 2050. (Contributed by Rohan Ridenour, 16-Apr-2022.)
Assertion
Ref Expression
19.36imv (∃𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.36imv
StepHypRef Expression
1 19.35 1950 . . 3 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
21biimpi 206 . 2 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
3 ax5e 1986 . 2 (∃𝑥𝜓𝜓)
42, 3syl6 35 1 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1626  wex 1849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984
This theorem depends on definitions:  df-bi 197  df-ex 1850
This theorem is referenced by:  19.36iv  2019
  Copyright terms: Public domain W3C validator