![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.9v | Structured version Visualization version GIF version |
Description: Version of 19.9 2110 with a dv condition, requiring fewer axioms. Any formula can be existentially quantified using a variable which it does not contain. See also 19.3v 1954. (Contributed by NM, 28-May-1995.) Remove dependency on ax-7 1981. (Revised by Wolf Lammen, 4-Dec-2017.) |
Ref | Expression |
---|---|
19.9v | ⊢ (∃𝑥𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax5e 1881 | . 2 ⊢ (∃𝑥𝜑 → 𝜑) | |
2 | 19.8v 1952 | . 2 ⊢ (𝜑 → ∃𝑥𝜑) | |
3 | 1, 2 | impbii 199 | 1 ⊢ (∃𝑥𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 |
This theorem depends on definitions: df-bi 197 df-ex 1745 |
This theorem is referenced by: 19.3v 1954 19.23vOLD 1959 19.36v 1960 19.44v 1968 19.45v 1969 19.41vOLD 1970 elsnxpOLD 5716 zfcndpow 9476 volfiniune 30421 bnj937 30968 bnj594 31108 bnj907 31161 bnj1128 31184 bnj1145 31187 bj-sbfvv 32890 coss0 34369 prter2 34485 relopabVD 39451 rfcnnnub 39509 |
Copyright terms: Public domain | W3C validator |