Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvratlt Structured version   Visualization version   GIF version

Theorem 1cvratlt 35281
Description: An atom less than or equal to an element covered by 1 is less than the element. (Contributed by NM, 7-May-2012.)
Hypotheses
Ref Expression
1cvratlt.b 𝐵 = (Base‘𝐾)
1cvratlt.l = (le‘𝐾)
1cvratlt.s < = (lt‘𝐾)
1cvratlt.u 1 = (1.‘𝐾)
1cvratlt.c 𝐶 = ( ⋖ ‘𝐾)
1cvratlt.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvratlt (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → 𝑃 < 𝑋)

Proof of Theorem 1cvratlt
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1228 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → 𝐾 ∈ HL)
2 simpl3 1232 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → 𝑋𝐵)
3 simprl 811 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → 𝑋𝐶 1 )
4 1cvratlt.b . . . 4 𝐵 = (Base‘𝐾)
5 1cvratlt.s . . . 4 < = (lt‘𝐾)
6 1cvratlt.u . . . 4 1 = (1.‘𝐾)
7 1cvratlt.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
8 1cvratlt.a . . . 4 𝐴 = (Atoms‘𝐾)
94, 5, 6, 7, 81cvratex 35280 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑞𝐴 𝑞 < 𝑋)
101, 2, 3, 9syl3anc 1477 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → ∃𝑞𝐴 𝑞 < 𝑋)
11 simp1l1 1351 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝐾 ∈ HL)
12 simp1l2 1352 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑃𝐴)
13 simp2 1132 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑞𝐴)
14 simp1l3 1353 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑋𝐵)
15 simp1rr 1306 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑃 𝑋)
16 simp3 1133 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑞 < 𝑋)
17 1cvratlt.l . . . . 5 = (le‘𝐾)
184, 17, 5, 8atlelt 35245 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑞𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑞 < 𝑋)) → 𝑃 < 𝑋)
1911, 12, 13, 14, 15, 16, 18syl132anc 1495 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑃 < 𝑋)
2019rexlimdv3a 3171 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → (∃𝑞𝐴 𝑞 < 𝑋𝑃 < 𝑋))
2110, 20mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → 𝑃 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wrex 3051   class class class wbr 4804  cfv 6049  Basecbs 16079  lecple 16170  ltcplt 17162  1.cp1 17259  ccvr 35070  Atomscatm 35071  HLchlt 35158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-p1 17261  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159
This theorem is referenced by:  cdlemb  35601  lhplt  35807
  Copyright terms: Public domain W3C validator