![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cvratlt | Structured version Visualization version GIF version |
Description: An atom less than or equal to an element covered by 1 is less than the element. (Contributed by NM, 7-May-2012.) |
Ref | Expression |
---|---|
1cvratlt.b | ⊢ 𝐵 = (Base‘𝐾) |
1cvratlt.l | ⊢ ≤ = (le‘𝐾) |
1cvratlt.s | ⊢ < = (lt‘𝐾) |
1cvratlt.u | ⊢ 1 = (1.‘𝐾) |
1cvratlt.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
1cvratlt.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
1cvratlt | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑃 < 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1228 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝐾 ∈ HL) | |
2 | simpl3 1232 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑋 ∈ 𝐵) | |
3 | simprl 811 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑋𝐶 1 ) | |
4 | 1cvratlt.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
5 | 1cvratlt.s | . . . 4 ⊢ < = (lt‘𝐾) | |
6 | 1cvratlt.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
7 | 1cvratlt.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
8 | 1cvratlt.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | 4, 5, 6, 7, 8 | 1cvratex 35280 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋𝐶 1 ) → ∃𝑞 ∈ 𝐴 𝑞 < 𝑋) |
10 | 1, 2, 3, 9 | syl3anc 1477 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → ∃𝑞 ∈ 𝐴 𝑞 < 𝑋) |
11 | simp1l1 1351 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝐾 ∈ HL) | |
12 | simp1l2 1352 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑃 ∈ 𝐴) | |
13 | simp2 1132 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑞 ∈ 𝐴) | |
14 | simp1l3 1353 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑋 ∈ 𝐵) | |
15 | simp1rr 1306 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑃 ≤ 𝑋) | |
16 | simp3 1133 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑞 < 𝑋) | |
17 | 1cvratlt.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
18 | 4, 17, 5, 8 | atlelt 35245 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑞 < 𝑋)) → 𝑃 < 𝑋) |
19 | 11, 12, 13, 14, 15, 16, 18 | syl132anc 1495 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑃 < 𝑋) |
20 | 19 | rexlimdv3a 3171 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → (∃𝑞 ∈ 𝐴 𝑞 < 𝑋 → 𝑃 < 𝑋)) |
21 | 10, 20 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑃 < 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 class class class wbr 4804 ‘cfv 6049 Basecbs 16079 lecple 16170 ltcplt 17162 1.cp1 17259 ⋖ ccvr 35070 Atomscatm 35071 HLchlt 35158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-preset 17149 df-poset 17167 df-plt 17179 df-lub 17195 df-glb 17196 df-join 17197 df-meet 17198 df-p0 17260 df-p1 17261 df-lat 17267 df-clat 17329 df-oposet 34984 df-ol 34986 df-oml 34987 df-covers 35074 df-ats 35075 df-atl 35106 df-cvlat 35130 df-hlat 35159 |
This theorem is referenced by: cdlemb 35601 lhplt 35807 |
Copyright terms: Public domain | W3C validator |