Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrco Structured version   Visualization version   GIF version

Theorem 1cvrco 35261
Description: The orthocomplement of an element covered by 1 is an atom. (Contributed by NM, 7-May-2012.)
Hypotheses
Ref Expression
1cvrco.b 𝐵 = (Base‘𝐾)
1cvrco.u 1 = (1.‘𝐾)
1cvrco.o = (oc‘𝐾)
1cvrco.c 𝐶 = ( ⋖ ‘𝐾)
1cvrco.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvrco ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ( 𝑋) ∈ 𝐴))

Proof of Theorem 1cvrco
StepHypRef Expression
1 hlop 35152 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
21adantr 472 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
3 simpr 479 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝑋𝐵)
4 1cvrco.b . . . . . 6 𝐵 = (Base‘𝐾)
5 1cvrco.u . . . . . 6 1 = (1.‘𝐾)
64, 5op1cl 34975 . . . . 5 (𝐾 ∈ OP → 1𝐵)
72, 6syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 1𝐵)
8 1cvrco.o . . . . 5 = (oc‘𝐾)
9 1cvrco.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
104, 8, 9cvrcon3b 35067 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵1𝐵) → (𝑋𝐶 1 ↔ ( 1 )𝐶( 𝑋)))
112, 3, 7, 10syl3anc 1477 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ( 1 )𝐶( 𝑋)))
12 eqid 2760 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
1312, 5, 8opoc1 34992 . . . . 5 (𝐾 ∈ OP → ( 1 ) = (0.‘𝐾))
142, 13syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( 1 ) = (0.‘𝐾))
1514breq1d 4814 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (( 1 )𝐶( 𝑋) ↔ (0.‘𝐾)𝐶( 𝑋)))
164, 8opoccl 34984 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
171, 16sylan 489 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
1817biantrurd 530 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((0.‘𝐾)𝐶( 𝑋) ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
1911, 15, 183bitrd 294 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
20 1cvrco.a . . . 4 𝐴 = (Atoms‘𝐾)
214, 12, 9, 20isat 35076 . . 3 (𝐾 ∈ HL → (( 𝑋) ∈ 𝐴 ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
2221adantr 472 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (( 𝑋) ∈ 𝐴 ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
2319, 22bitr4d 271 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ( 𝑋) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139   class class class wbr 4804  cfv 6049  Basecbs 16059  occoc 16151  0.cp0 17238  1.cp1 17239  OPcops 34962  ccvr 35052  Atomscatm 35053  HLchlt 35140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-p0 17240  df-p1 17241  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-hlat 35141
This theorem is referenced by:  1cvratex  35262  lhpoc  35803
  Copyright terms: Public domain W3C validator