Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrjat Structured version   Visualization version   GIF version

Theorem 1cvrjat 34580
Description: An element covered by the lattice unit, when joined with an atom not under it, equals the lattice unit. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
1cvrjat.b 𝐵 = (Base‘𝐾)
1cvrjat.l = (le‘𝐾)
1cvrjat.j = (join‘𝐾)
1cvrjat.u 1 = (1.‘𝐾)
1cvrjat.c 𝐶 = ( ⋖ ‘𝐾)
1cvrjat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvrjat (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) = 1 )

Proof of Theorem 1cvrjat
StepHypRef Expression
1 simprr 795 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ¬ 𝑃 𝑋)
2 1cvrjat.b . . . . . . . 8 𝐵 = (Base‘𝐾)
3 1cvrjat.l . . . . . . . 8 = (le‘𝐾)
4 1cvrjat.j . . . . . . . 8 = (join‘𝐾)
5 1cvrjat.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
6 1cvrjat.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
72, 3, 4, 5, 6cvr1 34515 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
87adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
91, 8mpbid 222 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐶(𝑋 𝑃))
10 simpl1 1062 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ HL)
11 hlop 34468 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
1210, 11syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ OP)
13 simpl2 1063 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐵)
14 hllat 34469 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1510, 14syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ Lat)
16 simpl3 1064 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝐴)
172, 6atbase 34395 . . . . . . . 8 (𝑃𝐴𝑃𝐵)
1816, 17syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝐵)
192, 4latjcl 17032 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) ∈ 𝐵)
2015, 13, 18, 19syl3anc 1324 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) ∈ 𝐵)
21 eqid 2620 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
222, 21, 5cvrcon3b 34383 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (𝑋 𝑃) ∈ 𝐵) → (𝑋𝐶(𝑋 𝑃) ↔ ((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋)))
2312, 13, 20, 22syl3anc 1324 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋𝐶(𝑋 𝑃) ↔ ((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋)))
249, 23mpbid 222 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋))
25 hlatl 34466 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2610, 25syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ AtLat)
272, 21opoccl 34300 . . . . . 6 ((𝐾 ∈ OP ∧ (𝑋 𝑃) ∈ 𝐵) → ((oc‘𝐾)‘(𝑋 𝑃)) ∈ 𝐵)
2812, 20, 27syl2anc 692 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(𝑋 𝑃)) ∈ 𝐵)
292, 21opoccl 34300 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
3012, 13, 29syl2anc 692 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
31 eqid 2620 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
32 1cvrjat.u . . . . . . . . 9 1 = (1.‘𝐾)
3331, 32, 21opoc1 34308 . . . . . . . 8 (𝐾 ∈ OP → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
3410, 11, 333syl 18 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
35 simprl 793 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐶 1 )
362, 32op1cl 34291 . . . . . . . . . 10 (𝐾 ∈ OP → 1𝐵)
3710, 11, 363syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 1𝐵)
382, 21, 5cvrcon3b 34383 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑋𝐵1𝐵) → (𝑋𝐶 1 ↔ ((oc‘𝐾)‘ 1 )𝐶((oc‘𝐾)‘𝑋)))
3912, 13, 37, 38syl3anc 1324 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋𝐶 1 ↔ ((oc‘𝐾)‘ 1 )𝐶((oc‘𝐾)‘𝑋)))
4035, 39mpbid 222 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘ 1 )𝐶((oc‘𝐾)‘𝑋))
4134, 40eqbrtrrd 4668 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (0.‘𝐾)𝐶((oc‘𝐾)‘𝑋))
422, 31, 5, 6isat 34392 . . . . . . 7 (𝐾 ∈ HL → (((oc‘𝐾)‘𝑋) ∈ 𝐴 ↔ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶((oc‘𝐾)‘𝑋))))
4310, 42syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (((oc‘𝐾)‘𝑋) ∈ 𝐴 ↔ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶((oc‘𝐾)‘𝑋))))
4430, 41, 43mpbir2and 956 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘𝑋) ∈ 𝐴)
452, 3, 31, 5, 6atcvreq0 34420 . . . . 5 ((𝐾 ∈ AtLat ∧ ((oc‘𝐾)‘(𝑋 𝑃)) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐴) → (((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋) ↔ ((oc‘𝐾)‘(𝑋 𝑃)) = (0.‘𝐾)))
4626, 28, 44, 45syl3anc 1324 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋) ↔ ((oc‘𝐾)‘(𝑋 𝑃)) = (0.‘𝐾)))
4724, 46mpbid 222 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(𝑋 𝑃)) = (0.‘𝐾))
4847fveq2d 6182 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑋 𝑃))) = ((oc‘𝐾)‘(0.‘𝐾)))
492, 21opococ 34301 . . 3 ((𝐾 ∈ OP ∧ (𝑋 𝑃) ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑋 𝑃))) = (𝑋 𝑃))
5012, 20, 49syl2anc 692 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑋 𝑃))) = (𝑋 𝑃))
5131, 32, 21opoc0 34309 . . 3 (𝐾 ∈ OP → ((oc‘𝐾)‘(0.‘𝐾)) = 1 )
5210, 11, 513syl 18 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(0.‘𝐾)) = 1 )
5348, 50, 523eqtr3d 2662 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) = 1 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988   class class class wbr 4644  cfv 5876  (class class class)co 6635  Basecbs 15838  lecple 15929  occoc 15930  joincjn 16925  0.cp0 17018  1.cp1 17019  Latclat 17026  OPcops 34278  ccvr 34368  Atomscatm 34369  AtLatcal 34370  HLchlt 34456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-preset 16909  df-poset 16927  df-plt 16939  df-lub 16955  df-glb 16956  df-join 16957  df-meet 16958  df-p0 17020  df-p1 17021  df-lat 17027  df-clat 17089  df-oposet 34282  df-ol 34284  df-oml 34285  df-covers 34372  df-ats 34373  df-atl 34404  df-cvlat 34428  df-hlat 34457
This theorem is referenced by:  1cvrat  34581  lhpjat1  35125
  Copyright terms: Public domain W3C validator