MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1egrvtxdg1 Structured version   Visualization version   GIF version

Theorem 1egrvtxdg1 27218
Description: The vertex degree of a one-edge graph, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1egrvtxdg1.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1egrvtxdg1.a (𝜑𝐴𝑋)
1egrvtxdg1.b (𝜑𝐵𝑉)
1egrvtxdg1.c (𝜑𝐶𝑉)
1egrvtxdg1.n (𝜑𝐵𝐶)
1egrvtxdg1.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
Assertion
Ref Expression
1egrvtxdg1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)

Proof of Theorem 1egrvtxdg1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 1egrvtxdg1.a . . . 4 (𝜑𝐴𝑋)
3 1egrvtxdg1.b . . . . 5 (𝜑𝐵𝑉)
4 1egrvtxdg1.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
53, 4eleqtrrd 2913 . . . 4 (𝜑𝐵 ∈ (Vtx‘𝐺))
6 1egrvtxdg1.c . . . . 5 (𝜑𝐶𝑉)
76, 4eleqtrrd 2913 . . . 4 (𝜑𝐶 ∈ (Vtx‘𝐺))
8 1egrvtxdg1.i . . . 4 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
9 1egrvtxdg1.n . . . 4 (𝜑𝐵𝐶)
101, 2, 5, 7, 8, 9usgr1e 26954 . . 3 (𝜑𝐺 ∈ USGraph)
11 eqid 2818 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
12 eqid 2818 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
13 eqid 2818 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
141, 11, 12, 13vtxdusgrval 27196 . . 3 ((𝐺 ∈ USGraph ∧ 𝐵 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐵) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}))
1510, 5, 14syl2anc 584 . 2 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}))
16 dmeq 5765 . . . . . . . 8 ((iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩} → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
1716adantl 482 . . . . . . 7 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
18 prex 5323 . . . . . . . 8 {𝐵, 𝐶} ∈ V
19 dmsnopg 6063 . . . . . . . 8 ({𝐵, 𝐶} ∈ V → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
2018, 19mp1i 13 . . . . . . 7 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
2117, 20eqtrd 2853 . . . . . 6 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → dom (iEdg‘𝐺) = {𝐴})
22 fveq1 6662 . . . . . . . 8 ((iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩} → ((iEdg‘𝐺)‘𝑥) = ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥))
2322eleq2d 2895 . . . . . . 7 ((iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩} → (𝐵 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)))
2423adantl 482 . . . . . 6 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (𝐵 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)))
2521, 24rabeqbidv 3483 . . . . 5 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)})
2625fveq2d 6667 . . . 4 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}))
27 fveq2 6663 . . . . . . . . . 10 (𝑥 = 𝐴 → ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥) = ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴))
2827eleq2d 2895 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥) ↔ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴)))
2928rabsnif 4651 . . . . . . . 8 {𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)} = if(𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴), {𝐴}, ∅)
30 prid1g 4688 . . . . . . . . . . 11 (𝐵𝑉𝐵 ∈ {𝐵, 𝐶})
313, 30syl 17 . . . . . . . . . 10 (𝜑𝐵 ∈ {𝐵, 𝐶})
32 fvsng 6934 . . . . . . . . . . 11 ((𝐴𝑋 ∧ {𝐵, 𝐶} ∈ V) → ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴) = {𝐵, 𝐶})
332, 18, 32sylancl 586 . . . . . . . . . 10 (𝜑 → ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴) = {𝐵, 𝐶})
3431, 33eleqtrrd 2913 . . . . . . . . 9 (𝜑𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴))
3534iftrued 4471 . . . . . . . 8 (𝜑 → if(𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴), {𝐴}, ∅) = {𝐴})
3629, 35syl5eq 2865 . . . . . . 7 (𝜑 → {𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)} = {𝐴})
3736fveq2d 6667 . . . . . 6 (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}) = (♯‘{𝐴}))
38 hashsng 13718 . . . . . . 7 (𝐴𝑋 → (♯‘{𝐴}) = 1)
392, 38syl 17 . . . . . 6 (𝜑 → (♯‘{𝐴}) = 1)
4037, 39eqtrd 2853 . . . . 5 (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}) = 1)
4140adantr 481 . . . 4 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}) = 1)
4226, 41eqtrd 2853 . . 3 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
438, 42mpdan 683 . 2 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
4415, 43eqtrd 2853 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  {crab 3139  Vcvv 3492  c0 4288  ifcif 4463  {csn 4557  {cpr 4559  cop 4563  dom cdm 5548  cfv 6348  1c1 10526  chash 13678  Vtxcvtx 26708  iEdgciedg 26709  USGraphcusgr 26861  VtxDegcvtxdg 27174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-xadd 12496  df-fz 12881  df-hash 13679  df-edg 26760  df-upgr 26794  df-umgr 26795  df-uspgr 26862  df-usgr 26863  df-vtxdg 27175
This theorem is referenced by:  1egrvtxdg1r  27219
  Copyright terms: Public domain W3C validator