Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  1hevtxdg0 Structured version   Visualization version   GIF version

Theorem 1hevtxdg0 26304
 Description: The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 is 0 if 𝐷 is not incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.)
Hypotheses
Ref Expression
1hevtxdg0.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
1hevtxdg0.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1hevtxdg0.a (𝜑𝐴𝑋)
1hevtxdg0.d (𝜑𝐷𝑉)
1hevtxdg0.e (𝜑𝐸𝑌)
1hevtxdg0.n (𝜑𝐷𝐸)
Assertion
Ref Expression
1hevtxdg0 (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0)

Proof of Theorem 1hevtxdg0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1hevtxdg0.n . . . . . . 7 (𝜑𝐷𝐸)
2 df-nel 2894 . . . . . . 7 (𝐷𝐸 ↔ ¬ 𝐷𝐸)
31, 2sylib 208 . . . . . 6 (𝜑 → ¬ 𝐷𝐸)
4 1hevtxdg0.i . . . . . . . 8 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
54fveq1d 6155 . . . . . . 7 (𝜑 → ((iEdg‘𝐺)‘𝐴) = ({⟨𝐴, 𝐸⟩}‘𝐴))
6 1hevtxdg0.a . . . . . . . 8 (𝜑𝐴𝑋)
7 1hevtxdg0.e . . . . . . . 8 (𝜑𝐸𝑌)
8 fvsng 6407 . . . . . . . 8 ((𝐴𝑋𝐸𝑌) → ({⟨𝐴, 𝐸⟩}‘𝐴) = 𝐸)
96, 7, 8syl2anc 692 . . . . . . 7 (𝜑 → ({⟨𝐴, 𝐸⟩}‘𝐴) = 𝐸)
105, 9eqtrd 2655 . . . . . 6 (𝜑 → ((iEdg‘𝐺)‘𝐴) = 𝐸)
113, 10neleqtrrd 2720 . . . . 5 (𝜑 → ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))
12 fveq2 6153 . . . . . . . . 9 (𝑥 = 𝐴 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝐴))
1312eleq2d 2684 . . . . . . . 8 (𝑥 = 𝐴 → (𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
1413notbid 308 . . . . . . 7 (𝑥 = 𝐴 → (¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
1514ralsng 4194 . . . . . 6 (𝐴𝑋 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
166, 15syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
1711, 16mpbird 247 . . . 4 (𝜑 → ∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥))
184dmeqd 5291 . . . . . 6 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, 𝐸⟩})
19 dmsnopg 5570 . . . . . . 7 (𝐸𝑌 → dom {⟨𝐴, 𝐸⟩} = {𝐴})
207, 19syl 17 . . . . . 6 (𝜑 → dom {⟨𝐴, 𝐸⟩} = {𝐴})
2118, 20eqtrd 2655 . . . . 5 (𝜑 → dom (iEdg‘𝐺) = {𝐴})
2221raleqdv 3136 . . . 4 (𝜑 → (∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)))
2317, 22mpbird 247 . . 3 (𝜑 → ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥))
24 ralnex 2987 . . 3 (∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))
2523, 24sylib 208 . 2 (𝜑 → ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))
26 1hevtxdg0.d . . . 4 (𝜑𝐷𝑉)
27 1hevtxdg0.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2827eleq2d 2684 . . . 4 (𝜑 → (𝐷 ∈ (Vtx‘𝐺) ↔ 𝐷𝑉))
2926, 28mpbird 247 . . 3 (𝜑𝐷 ∈ (Vtx‘𝐺))
30 eqid 2621 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
31 eqid 2621 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
32 eqid 2621 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
3330, 31, 32vtxd0nedgb 26287 . . 3 (𝐷 ∈ (Vtx‘𝐺) → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)))
3429, 33syl 17 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)))
3525, 34mpbird 247 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   = wceq 1480   ∈ wcel 1987   ∉ wnel 2893  ∀wral 2907  ∃wrex 2908  {csn 4153  ⟨cop 4159  dom cdm 5079  ‘cfv 5852  0cc0 9888  Vtxcvtx 25791  iEdgciedg 25792  VtxDegcvtxdg 26265 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-n0 11245  df-xnn0 11316  df-z 11330  df-uz 11640  df-xadd 11899  df-fz 12277  df-hash 13066  df-vtxdg 26266 This theorem is referenced by:  p1evtxdeq  26312  eupth2lem3lem6  26976
 Copyright terms: Public domain W3C validator