MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1hevtxdg1 Structured version   Visualization version   GIF version

Theorem 1hevtxdg1 27280
Description: The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 (not being a loop) is 1 if 𝐷 is incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
1hevtxdg0.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
1hevtxdg0.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1hevtxdg0.a (𝜑𝐴𝑋)
1hevtxdg0.d (𝜑𝐷𝑉)
1hevtxdg1.e (𝜑𝐸 ∈ 𝒫 𝑉)
1hevtxdg1.n (𝜑𝐷𝐸)
1hevtxdg1.l (𝜑 → 2 ≤ (♯‘𝐸))
Assertion
Ref Expression
1hevtxdg1 (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 1)

Proof of Theorem 1hevtxdg1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1hevtxdg0.i . . . 4 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
21dmeqd 5767 . . 3 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, 𝐸⟩})
3 1hevtxdg1.e . . . 4 (𝜑𝐸 ∈ 𝒫 𝑉)
4 dmsnopg 6063 . . . 4 (𝐸 ∈ 𝒫 𝑉 → dom {⟨𝐴, 𝐸⟩} = {𝐴})
53, 4syl 17 . . 3 (𝜑 → dom {⟨𝐴, 𝐸⟩} = {𝐴})
62, 5eqtrd 2854 . 2 (𝜑 → dom (iEdg‘𝐺) = {𝐴})
7 1hevtxdg0.a . . . . . . 7 (𝜑𝐴𝑋)
8 fveq2 6663 . . . . . . . . 9 (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸))
98breq2d 5069 . . . . . . . 8 (𝑥 = 𝐸 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘𝐸)))
10 1hevtxdg0.v . . . . . . . . . 10 (𝜑 → (Vtx‘𝐺) = 𝑉)
1110pweqd 4542 . . . . . . . . 9 (𝜑 → 𝒫 (Vtx‘𝐺) = 𝒫 𝑉)
123, 11eleqtrrd 2914 . . . . . . . 8 (𝜑𝐸 ∈ 𝒫 (Vtx‘𝐺))
13 1hevtxdg1.l . . . . . . . 8 (𝜑 → 2 ≤ (♯‘𝐸))
149, 12, 13elrabd 3680 . . . . . . 7 (𝜑𝐸 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)})
157, 14fsnd 6650 . . . . . 6 (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)})
1615adantr 483 . . . . 5 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)})
171adantr 483 . . . . . 6 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
18 simpr 487 . . . . . 6 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → dom (iEdg‘𝐺) = {𝐴})
1917, 18feq12d 6495 . . . . 5 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)} ↔ {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)}))
2016, 19mpbird 259 . . . 4 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)})
21 1hevtxdg0.d . . . . . 6 (𝜑𝐷𝑉)
2221, 10eleqtrrd 2914 . . . . 5 (𝜑𝐷 ∈ (Vtx‘𝐺))
2322adantr 483 . . . 4 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → 𝐷 ∈ (Vtx‘𝐺))
24 eqid 2819 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
25 eqid 2819 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
26 eqid 2819 . . . . 5 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
27 eqid 2819 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
2824, 25, 26, 27vtxdlfgrval 27259 . . . 4 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐷 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐷) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}))
2920, 23, 28syl2anc 586 . . 3 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → ((VtxDeg‘𝐺)‘𝐷) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}))
30 rabeq 3482 . . . . 5 (dom (iEdg‘𝐺) = {𝐴} → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)})
3130adantl 484 . . . 4 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)})
3231fveq2d 6667 . . 3 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}))
33 fveq2 6663 . . . . . . . . 9 (𝑥 = 𝐴 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝐴))
3433eleq2d 2896 . . . . . . . 8 (𝑥 = 𝐴 → (𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
3534rabsnif 4651 . . . . . . 7 {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = if(𝐷 ∈ ((iEdg‘𝐺)‘𝐴), {𝐴}, ∅)
36 1hevtxdg1.n . . . . . . . . 9 (𝜑𝐷𝐸)
371fveq1d 6665 . . . . . . . . . 10 (𝜑 → ((iEdg‘𝐺)‘𝐴) = ({⟨𝐴, 𝐸⟩}‘𝐴))
38 fvsng 6935 . . . . . . . . . . 11 ((𝐴𝑋𝐸 ∈ 𝒫 𝑉) → ({⟨𝐴, 𝐸⟩}‘𝐴) = 𝐸)
397, 3, 38syl2anc 586 . . . . . . . . . 10 (𝜑 → ({⟨𝐴, 𝐸⟩}‘𝐴) = 𝐸)
4037, 39eqtrd 2854 . . . . . . . . 9 (𝜑 → ((iEdg‘𝐺)‘𝐴) = 𝐸)
4136, 40eleqtrrd 2914 . . . . . . . 8 (𝜑𝐷 ∈ ((iEdg‘𝐺)‘𝐴))
4241iftrued 4473 . . . . . . 7 (𝜑 → if(𝐷 ∈ ((iEdg‘𝐺)‘𝐴), {𝐴}, ∅) = {𝐴})
4335, 42syl5eq 2866 . . . . . 6 (𝜑 → {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝐴})
4443fveq2d 6667 . . . . 5 (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝐴}))
45 hashsng 13722 . . . . . 6 (𝐴𝑋 → (♯‘{𝐴}) = 1)
467, 45syl 17 . . . . 5 (𝜑 → (♯‘{𝐴}) = 1)
4744, 46eqtrd 2854 . . . 4 (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
4847adantr 483 . . 3 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
4929, 32, 483eqtrd 2858 . 2 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → ((VtxDeg‘𝐺)‘𝐷) = 1)
506, 49mpdan 685 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  {crab 3140  c0 4289  ifcif 4465  𝒫 cpw 4537  {csn 4559  cop 4565   class class class wbr 5057  dom cdm 5548  wf 6344  cfv 6348  1c1 10530  cle 10668  2c2 11684  chash 13682  Vtxcvtx 26773  iEdgciedg 26774  VtxDegcvtxdg 27239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-xadd 12500  df-fz 12885  df-hash 13683  df-vtxdg 27240
This theorem is referenced by:  1hegrvtxdg1  27281  p1evtxdp1  27288
  Copyright terms: Public domain W3C validator