![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1idl | Structured version Visualization version GIF version |
Description: Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
1idl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
1idl.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
1idl.3 | ⊢ 𝑋 = ran 𝐺 |
1idl.4 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
1idl | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 ↔ 𝐼 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1idl.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1idl.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
3 | 1, 2 | idlss 33945 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ 𝑋) |
4 | 3 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → 𝐼 ⊆ 𝑋) |
5 | 1idl.2 | . . . . . . . . 9 ⊢ 𝐻 = (2nd ‘𝑅) | |
6 | 1 | rneqi 5384 | . . . . . . . . . 10 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
7 | 2, 6 | eqtri 2673 | . . . . . . . . 9 ⊢ 𝑋 = ran (1st ‘𝑅) |
8 | 1idl.4 | . . . . . . . . 9 ⊢ 𝑈 = (GId‘𝐻) | |
9 | 5, 7, 8 | rngolidm 33866 | . . . . . . . 8 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → (𝑈𝐻𝑥) = 𝑥) |
10 | 9 | ad2ant2rl 800 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → (𝑈𝐻𝑥) = 𝑥) |
11 | 1, 5, 2 | idlrmulcl 33950 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → (𝑈𝐻𝑥) ∈ 𝐼) |
12 | 10, 11 | eqeltrrd 2731 | . . . . . 6 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → 𝑥 ∈ 𝐼) |
13 | 12 | expr 642 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → (𝑥 ∈ 𝑋 → 𝑥 ∈ 𝐼)) |
14 | 13 | ssrdv 3642 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → 𝑋 ⊆ 𝐼) |
15 | 4, 14 | eqssd 3653 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → 𝐼 = 𝑋) |
16 | 15 | ex 449 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 → 𝐼 = 𝑋)) |
17 | 7, 5, 8 | rngo1cl 33868 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
18 | 17 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑈 ∈ 𝑋) |
19 | eleq2 2719 | . . 3 ⊢ (𝐼 = 𝑋 → (𝑈 ∈ 𝐼 ↔ 𝑈 ∈ 𝑋)) | |
20 | 18, 19 | syl5ibrcom 237 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 = 𝑋 → 𝑈 ∈ 𝐼)) |
21 | 16, 20 | impbid 202 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 ↔ 𝐼 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 ran crn 5144 ‘cfv 5926 (class class class)co 6690 1st c1st 7208 2nd c2nd 7209 GIdcgi 27472 RingOpscrngo 33823 Idlcidl 33936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fo 5932 df-fv 5934 df-riota 6651 df-ov 6693 df-1st 7210 df-2nd 7211 df-grpo 27475 df-gid 27476 df-ablo 27527 df-ass 33772 df-exid 33774 df-mgmOLD 33778 df-sgrOLD 33790 df-mndo 33796 df-rngo 33824 df-idl 33939 |
This theorem is referenced by: 0rngo 33956 divrngidl 33957 maxidln1 33973 |
Copyright terms: Public domain | W3C validator |