MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1loopgrnb0 Structured version   Visualization version   GIF version

Theorem 1loopgrnb0 27286
Description: In a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Assertion
Ref Expression
1loopgrnb0 (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅)

Proof of Theorem 1loopgrnb0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 1loopgruspgr.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2 1loopgruspgr.a . . . . 5 (𝜑𝐴𝑋)
3 1loopgruspgr.n . . . . 5 (𝜑𝑁𝑉)
4 1loopgruspgr.i . . . . 5 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
51, 2, 3, 41loopgruspgr 27284 . . . 4 (𝜑𝐺 ∈ USPGraph)
6 uspgrupgr 26963 . . . 4 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ UPGraph)
81eleq2d 2900 . . . 4 (𝜑 → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁𝑉))
93, 8mpbird 259 . . 3 (𝜑𝑁 ∈ (Vtx‘𝐺))
10 eqid 2823 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
11 eqid 2823 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
1210, 11nbupgr 27128 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)})
137, 9, 12syl2anc 586 . 2 (𝜑 → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)})
141difeq1d 4100 . . . . . . . 8 (𝜑 → ((Vtx‘𝐺) ∖ {𝑁}) = (𝑉 ∖ {𝑁}))
1514eleq2d 2900 . . . . . . 7 (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ↔ 𝑣 ∈ (𝑉 ∖ {𝑁})))
16 eldifsn 4721 . . . . . . . 8 (𝑣 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑣𝑉𝑣𝑁))
173elexd 3516 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ V)
1817adantr 483 . . . . . . . . . . . 12 ((𝜑𝑣𝑉) → 𝑁 ∈ V)
19 elex 3514 . . . . . . . . . . . . 13 (𝑣𝑉𝑣 ∈ V)
2019adantl 484 . . . . . . . . . . . 12 ((𝜑𝑣𝑉) → 𝑣 ∈ V)
2118, 20preqsnd 4791 . . . . . . . . . . 11 ((𝜑𝑣𝑉) → ({𝑁, 𝑣} = {𝑁} ↔ (𝑁 = 𝑁𝑣 = 𝑁)))
22 simpr 487 . . . . . . . . . . 11 ((𝑁 = 𝑁𝑣 = 𝑁) → 𝑣 = 𝑁)
2321, 22syl6bi 255 . . . . . . . . . 10 ((𝜑𝑣𝑉) → ({𝑁, 𝑣} = {𝑁} → 𝑣 = 𝑁))
2423necon3ad 3031 . . . . . . . . 9 ((𝜑𝑣𝑉) → (𝑣𝑁 → ¬ {𝑁, 𝑣} = {𝑁}))
2524expimpd 456 . . . . . . . 8 (𝜑 → ((𝑣𝑉𝑣𝑁) → ¬ {𝑁, 𝑣} = {𝑁}))
2616, 25syl5bi 244 . . . . . . 7 (𝜑 → (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁}))
2715, 26sylbid 242 . . . . . 6 (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁}))
2827imp 409 . . . . 5 ((𝜑𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} = {𝑁})
291, 2, 3, 41loopgredg 27285 . . . . . . . . 9 (𝜑 → (Edg‘𝐺) = {{𝑁}})
3029eleq2d 2900 . . . . . . . 8 (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} ∈ {{𝑁}}))
31 prex 5335 . . . . . . . . 9 {𝑁, 𝑣} ∈ V
3231elsn 4584 . . . . . . . 8 ({𝑁, 𝑣} ∈ {{𝑁}} ↔ {𝑁, 𝑣} = {𝑁})
3330, 32syl6bb 289 . . . . . . 7 (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} = {𝑁}))
3433notbid 320 . . . . . 6 (𝜑 → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁}))
3534adantr 483 . . . . 5 ((𝜑𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁}))
3628, 35mpbird 259 . . . 4 ((𝜑𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺))
3736ralrimiva 3184 . . 3 (𝜑 → ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺))
38 rabeq0 4340 . . 3 ({𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅ ↔ ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺))
3937, 38sylibr 236 . 2 (𝜑 → {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅)
4013, 39eqtrd 2858 1 (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  {crab 3144  Vcvv 3496  cdif 3935  c0 4293  {csn 4569  {cpr 4571  cop 4575  cfv 6357  (class class class)co 7158  Vtxcvtx 26783  iEdgciedg 26784  Edgcedg 26834  UPGraphcupgr 26867  USPGraphcuspgr 26935   NeighbVtx cnbgr 27116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694  df-edg 26835  df-upgr 26869  df-uspgr 26937  df-nbgr 27117
This theorem is referenced by:  uspgrloopnb0  27303
  Copyright terms: Public domain W3C validator