MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1lt10 Structured version   Visualization version   GIF version

Theorem 1lt10 11513
Description: 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
1lt10 1 < 10

Proof of Theorem 1lt10
StepHypRef Expression
1 1lt2 11041 . 2 1 < 2
2 2lt10 11512 . 2 2 < 10
3 1re 9895 . . 3 1 ∈ ℝ
4 2re 10937 . . 3 2 ∈ ℝ
5 10re 11349 . . 3 10 ∈ ℝ
63, 4, 5lttri 10014 . 2 ((1 < 2 ∧ 2 < 10) → 1 < 10)
71, 2, 6mp2an 703 1 1 < 10
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 4577  0cc0 9792  1c1 9793   < clt 9930  2c2 10917  cdc 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-dec 11326
This theorem is referenced by:  0.999...  14397  3dvds  14836  11prm  15606  13prm  15607  17prm  15608  19prm  15609  23prm  15610  37prm  15612  43prm  15613  83prm  15614  139prm  15615  163prm  15616  317prm  15617  631prm  15618  2503prm  15631  ressle  15828  ressds  15842  resshom  15847  ressco  15848  slotsbhcdif  15849  oppcbas  16147  rescbas  16258  rescabs  16262  catstr  16386  isposix  16726  odubas  16902  opsrbas  19246  znbas2  19652  thlbas  19801  ressunif  21818  tuslem  21823  tmslem  22038  log2ub  24393  trkgstr  25060  ttgbas  25475  eengstr  25578  257prm  39809  fmtno4prmfac193  39821  fmtno5nprm  39831  139prmALT  39847  127prm  39851  tgblthelfgott  40027  tgoldbach  40030  baseltedgf  40222
  Copyright terms: Public domain W3C validator