MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1lt2pi Structured version   Visualization version   GIF version

Theorem 1lt2pi 9583
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
1lt2pi 1𝑜 <N (1𝑜 +N 1𝑜)

Proof of Theorem 1lt2pi
StepHypRef Expression
1 1onn 7583 . . . . 5 1𝑜 ∈ ω
2 nna0 7548 . . . . 5 (1𝑜 ∈ ω → (1𝑜 +𝑜 ∅) = 1𝑜)
31, 2ax-mp 5 . . . 4 (1𝑜 +𝑜 ∅) = 1𝑜
4 0lt1o 7448 . . . . 5 ∅ ∈ 1𝑜
5 peano1 6954 . . . . . 6 ∅ ∈ ω
6 nnaord 7563 . . . . . 6 ((∅ ∈ ω ∧ 1𝑜 ∈ ω ∧ 1𝑜 ∈ ω) → (∅ ∈ 1𝑜 ↔ (1𝑜 +𝑜 ∅) ∈ (1𝑜 +𝑜 1𝑜)))
75, 1, 1, 6mp3an 1415 . . . . 5 (∅ ∈ 1𝑜 ↔ (1𝑜 +𝑜 ∅) ∈ (1𝑜 +𝑜 1𝑜))
84, 7mpbi 218 . . . 4 (1𝑜 +𝑜 ∅) ∈ (1𝑜 +𝑜 1𝑜)
93, 8eqeltrri 2684 . . 3 1𝑜 ∈ (1𝑜 +𝑜 1𝑜)
10 1pi 9561 . . . 4 1𝑜N
11 addpiord 9562 . . . 4 ((1𝑜N ∧ 1𝑜N) → (1𝑜 +N 1𝑜) = (1𝑜 +𝑜 1𝑜))
1210, 10, 11mp2an 703 . . 3 (1𝑜 +N 1𝑜) = (1𝑜 +𝑜 1𝑜)
139, 12eleqtrri 2686 . 2 1𝑜 ∈ (1𝑜 +N 1𝑜)
14 addclpi 9570 . . . 4 ((1𝑜N ∧ 1𝑜N) → (1𝑜 +N 1𝑜) ∈ N)
1510, 10, 14mp2an 703 . . 3 (1𝑜 +N 1𝑜) ∈ N
16 ltpiord 9565 . . 3 ((1𝑜N ∧ (1𝑜 +N 1𝑜) ∈ N) → (1𝑜 <N (1𝑜 +N 1𝑜) ↔ 1𝑜 ∈ (1𝑜 +N 1𝑜)))
1710, 15, 16mp2an 703 . 2 (1𝑜 <N (1𝑜 +N 1𝑜) ↔ 1𝑜 ∈ (1𝑜 +N 1𝑜))
1813, 17mpbir 219 1 1𝑜 <N (1𝑜 +N 1𝑜)
Colors of variables: wff setvar class
Syntax hints:  wb 194   = wceq 1474  wcel 1976  c0 3873   class class class wbr 4577  (class class class)co 6527  ωcom 6934  1𝑜c1o 7417   +𝑜 coa 7421  Ncnpi 9522   +N cpli 9523   <N clti 9525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-ni 9550  df-pli 9551  df-lti 9553
This theorem is referenced by:  1lt2nq  9651
  Copyright terms: Public domain W3C validator