MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1mavmul Structured version   Visualization version   GIF version

Theorem 1mavmul 20348
Description: Multiplication of the identity NxN matrix with an N-dimensional vector results in the vector itself. (Contributed by AV, 9-Feb-2019.) (Revised by AV, 23-Feb-2019.)
Hypotheses
Ref Expression
1mavmul.a 𝐴 = (𝑁 Mat 𝑅)
1mavmul.b 𝐵 = (Base‘𝑅)
1mavmul.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
1mavmul.r (𝜑𝑅 ∈ Ring)
1mavmul.n (𝜑𝑁 ∈ Fin)
1mavmul.y (𝜑𝑌 ∈ (𝐵𝑚 𝑁))
Assertion
Ref Expression
1mavmul (𝜑 → ((1r𝐴) · 𝑌) = 𝑌)

Proof of Theorem 1mavmul
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1mavmul.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 1mavmul.t . . 3 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3 1mavmul.b . . 3 𝐵 = (Base‘𝑅)
4 eqid 2621 . . 3 (.r𝑅) = (.r𝑅)
5 1mavmul.r . . 3 (𝜑𝑅 ∈ Ring)
6 1mavmul.n . . 3 (𝜑𝑁 ∈ Fin)
7 eqid 2621 . . . . 5 (Base‘𝐴) = (Base‘𝐴)
81fveq2i 6192 . . . . 5 (1r𝐴) = (1r‘(𝑁 Mat 𝑅))
91, 7, 8mat1bas 20249 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (1r𝐴) ∈ (Base‘𝐴))
105, 6, 9syl2anc 693 . . 3 (𝜑 → (1r𝐴) ∈ (Base‘𝐴))
11 1mavmul.y . . 3 (𝜑𝑌 ∈ (𝐵𝑚 𝑁))
121, 2, 3, 4, 5, 6, 10, 11mavmulval 20345 . 2 (𝜑 → ((1r𝐴) · 𝑌) = (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗))))))
13 eqid 2621 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
14 eqid 2621 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
151, 13, 14mat1 20247 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))))
166, 5, 15syl2anc 693 . . . . . . . 8 (𝜑 → (1r𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))))
1716oveqdr 6671 . . . . . . 7 ((𝜑𝑖𝑁) → (𝑖(1r𝐴)𝑗) = (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗))
1817oveq1d 6662 . . . . . 6 ((𝜑𝑖𝑁) → ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗)) = ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)))
1918mpteq2dv 4743 . . . . 5 ((𝜑𝑖𝑁) → (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗))))
2019oveq2d 6663 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)))))
21 eqidd 2622 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))))
22 eqeq12 2634 . . . . . . . . . . 11 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑥 = 𝑦𝑖 = 𝑗))
2322ifbid 4106 . . . . . . . . . 10 ((𝑥 = 𝑖𝑦 = 𝑗) → if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
2423adantl 482 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
25 simpr 477 . . . . . . . . . 10 ((𝜑𝑖𝑁) → 𝑖𝑁)
2625adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑖𝑁)
27 simpr 477 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
28 fvexd 6201 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (1r𝑅) ∈ V)
29 fvexd 6201 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (0g𝑅) ∈ V)
3028, 29ifcld 4129 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) ∈ V)
3121, 24, 26, 27, 30ovmpt2d 6785 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
3231oveq1d 6662 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)) = (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)))
33 iftrue 4090 . . . . . . . . . . . 12 (𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (1r𝑅))
3433adantr 481 . . . . . . . . . . 11 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (1r𝑅))
3534oveq1d 6662 . . . . . . . . . 10 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = ((1r𝑅)(.r𝑅)(𝑌𝑗)))
365adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖𝑁) → 𝑅 ∈ Ring)
3736adantr 481 . . . . . . . . . . . 12 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
38 fvex 6199 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) ∈ V
393, 38eqeltri 2696 . . . . . . . . . . . . . . . . . 18 𝐵 ∈ V
4039a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ V)
4140, 6elmapd 7868 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 ∈ (𝐵𝑚 𝑁) ↔ 𝑌:𝑁𝐵))
42 ffvelrn 6355 . . . . . . . . . . . . . . . . 17 ((𝑌:𝑁𝐵𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
4342ex 450 . . . . . . . . . . . . . . . 16 (𝑌:𝑁𝐵 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4441, 43syl6bi 243 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 ∈ (𝐵𝑚 𝑁) → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵)))
4511, 44mpd 15 . . . . . . . . . . . . . 14 (𝜑 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4645adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖𝑁) → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4746imp 445 . . . . . . . . . . . 12 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
483, 4, 13ringlidm 18565 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑌𝑗) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(𝑌𝑗)) = (𝑌𝑗))
4937, 47, 48syl2anc 693 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((1r𝑅)(.r𝑅)(𝑌𝑗)) = (𝑌𝑗))
5049adantl 482 . . . . . . . . . 10 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → ((1r𝑅)(.r𝑅)(𝑌𝑗)) = (𝑌𝑗))
51 fveq2 6189 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑌𝑗) = (𝑌𝑖))
5251equcoms 1946 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑌𝑗) = (𝑌𝑖))
5352adantr 481 . . . . . . . . . 10 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (𝑌𝑗) = (𝑌𝑖))
5435, 50, 533eqtrd 2659 . . . . . . . . 9 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = (𝑌𝑖))
55 iftrue 4090 . . . . . . . . . . 11 (𝑗 = 𝑖 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (𝑌𝑖))
5655equcoms 1946 . . . . . . . . . 10 (𝑖 = 𝑗 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (𝑌𝑖))
5756adantr 481 . . . . . . . . 9 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (𝑌𝑖))
5854, 57eqtr4d 2658 . . . . . . . 8 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
59 iffalse 4093 . . . . . . . . . . 11 𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (0g𝑅))
6059oveq1d 6662 . . . . . . . . . 10 𝑖 = 𝑗 → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = ((0g𝑅)(.r𝑅)(𝑌𝑗)))
6160adantr 481 . . . . . . . . 9 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = ((0g𝑅)(.r𝑅)(𝑌𝑗)))
623, 4, 14ringlz 18581 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑌𝑗) ∈ 𝐵) → ((0g𝑅)(.r𝑅)(𝑌𝑗)) = (0g𝑅))
6337, 47, 62syl2anc 693 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅)(.r𝑅)(𝑌𝑗)) = (0g𝑅))
6463adantl 482 . . . . . . . . 9 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → ((0g𝑅)(.r𝑅)(𝑌𝑗)) = (0g𝑅))
65 eqcom 2628 . . . . . . . . . . . 12 (𝑖 = 𝑗𝑗 = 𝑖)
66 iffalse 4093 . . . . . . . . . . . 12 𝑗 = 𝑖 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (0g𝑅))
6765, 66sylnbi 320 . . . . . . . . . . 11 𝑖 = 𝑗 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (0g𝑅))
6867eqcomd 2627 . . . . . . . . . 10 𝑖 = 𝑗 → (0g𝑅) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
6968adantr 481 . . . . . . . . 9 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (0g𝑅) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
7061, 64, 693eqtrd 2659 . . . . . . . 8 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
7158, 70pm2.61ian 831 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
7232, 71eqtrd 2655 . . . . . 6 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
7372mpteq2dva 4742 . . . . 5 ((𝜑𝑖𝑁) → (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅))))
7473oveq2d 6663 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))))
75 ringmnd 18550 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
765, 75syl 17 . . . . . 6 (𝜑𝑅 ∈ Mnd)
7776adantr 481 . . . . 5 ((𝜑𝑖𝑁) → 𝑅 ∈ Mnd)
786adantr 481 . . . . 5 ((𝜑𝑖𝑁) → 𝑁 ∈ Fin)
79 eqid 2621 . . . . 5 (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅))) = (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
80 ffvelrn 6355 . . . . . . . . . 10 ((𝑌:𝑁𝐵𝑖𝑁) → (𝑌𝑖) ∈ 𝐵)
8180, 3syl6eleq 2710 . . . . . . . . 9 ((𝑌:𝑁𝐵𝑖𝑁) → (𝑌𝑖) ∈ (Base‘𝑅))
8281ex 450 . . . . . . . 8 (𝑌:𝑁𝐵 → (𝑖𝑁 → (𝑌𝑖) ∈ (Base‘𝑅)))
8341, 82syl6bi 243 . . . . . . 7 (𝜑 → (𝑌 ∈ (𝐵𝑚 𝑁) → (𝑖𝑁 → (𝑌𝑖) ∈ (Base‘𝑅))))
8411, 83mpd 15 . . . . . 6 (𝜑 → (𝑖𝑁 → (𝑌𝑖) ∈ (Base‘𝑅)))
8584imp 445 . . . . 5 ((𝜑𝑖𝑁) → (𝑌𝑖) ∈ (Base‘𝑅))
8614, 77, 78, 25, 79, 85gsummptif1n0 18359 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))) = (𝑌𝑖))
8720, 74, 863eqtrd 2659 . . 3 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑌𝑖))
8887mpteq2dva 4742 . 2 (𝜑 → (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗))))) = (𝑖𝑁 ↦ (𝑌𝑖)))
89 ffn 6043 . . . . 5 (𝑌:𝑁𝐵𝑌 Fn 𝑁)
9041, 89syl6bi 243 . . . 4 (𝜑 → (𝑌 ∈ (𝐵𝑚 𝑁) → 𝑌 Fn 𝑁))
9111, 90mpd 15 . . 3 (𝜑𝑌 Fn 𝑁)
92 eqcom 2628 . . . 4 ((𝑖𝑁 ↦ (𝑌𝑖)) = 𝑌𝑌 = (𝑖𝑁 ↦ (𝑌𝑖)))
93 dffn5 6239 . . . 4 (𝑌 Fn 𝑁𝑌 = (𝑖𝑁 ↦ (𝑌𝑖)))
9492, 93bitr4i 267 . . 3 ((𝑖𝑁 ↦ (𝑌𝑖)) = 𝑌𝑌 Fn 𝑁)
9591, 94sylibr 224 . 2 (𝜑 → (𝑖𝑁 ↦ (𝑌𝑖)) = 𝑌)
9612, 88, 953eqtrd 2659 1 (𝜑 → ((1r𝐴) · 𝑌) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1482  wcel 1989  Vcvv 3198  ifcif 4084  cop 4181  cmpt 4727   Fn wfn 5881  wf 5882  cfv 5886  (class class class)co 6647  cmpt2 6649  𝑚 cmap 7854  Fincfn 7952  Basecbs 15851  .rcmulr 15936  0gc0g 16094   Σg cgsu 16095  Mndcmnd 17288  1rcur 18495  Ringcrg 18541   Mat cmat 20207   maVecMul cmvmul 20340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-ot 4184  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-of 6894  df-om 7063  df-1st 7165  df-2nd 7166  df-supp 7293  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-map 7856  df-ixp 7906  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fsupp 8273  df-sup 8345  df-oi 8412  df-card 8762  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-fz 12324  df-fzo 12462  df-seq 12797  df-hash 13113  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-sca 15951  df-vsca 15952  df-ip 15953  df-tset 15954  df-ple 15955  df-ds 15958  df-hom 15960  df-cco 15961  df-0g 16096  df-gsum 16097  df-prds 16102  df-pws 16104  df-mre 16240  df-mrc 16241  df-acs 16243  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-mhm 17329  df-submnd 17330  df-grp 17419  df-minusg 17420  df-sbg 17421  df-mulg 17535  df-subg 17585  df-ghm 17652  df-cntz 17744  df-cmn 18189  df-abl 18190  df-mgp 18484  df-ur 18496  df-ring 18543  df-subrg 18772  df-lmod 18859  df-lss 18927  df-sra 19166  df-rgmod 19167  df-dsmm 20070  df-frlm 20085  df-mamu 20184  df-mat 20208  df-mvmul 20341
This theorem is referenced by:  slesolinv  20480  slesolinvbi  20481
  Copyright terms: Public domain W3C validator