MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1mavmul Structured version   Visualization version   GIF version

Theorem 1mavmul 21151
Description: Multiplication of the identity NxN matrix with an N-dimensional vector results in the vector itself. (Contributed by AV, 9-Feb-2019.) (Revised by AV, 23-Feb-2019.)
Hypotheses
Ref Expression
1mavmul.a 𝐴 = (𝑁 Mat 𝑅)
1mavmul.b 𝐵 = (Base‘𝑅)
1mavmul.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
1mavmul.r (𝜑𝑅 ∈ Ring)
1mavmul.n (𝜑𝑁 ∈ Fin)
1mavmul.y (𝜑𝑌 ∈ (𝐵m 𝑁))
Assertion
Ref Expression
1mavmul (𝜑 → ((1r𝐴) · 𝑌) = 𝑌)

Proof of Theorem 1mavmul
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1mavmul.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 1mavmul.t . . 3 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3 1mavmul.b . . 3 𝐵 = (Base‘𝑅)
4 eqid 2821 . . 3 (.r𝑅) = (.r𝑅)
5 1mavmul.r . . 3 (𝜑𝑅 ∈ Ring)
6 1mavmul.n . . 3 (𝜑𝑁 ∈ Fin)
7 eqid 2821 . . . . 5 (Base‘𝐴) = (Base‘𝐴)
81fveq2i 6668 . . . . 5 (1r𝐴) = (1r‘(𝑁 Mat 𝑅))
91, 7, 8mat1bas 21052 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (1r𝐴) ∈ (Base‘𝐴))
105, 6, 9syl2anc 586 . . 3 (𝜑 → (1r𝐴) ∈ (Base‘𝐴))
11 1mavmul.y . . 3 (𝜑𝑌 ∈ (𝐵m 𝑁))
121, 2, 3, 4, 5, 6, 10, 11mavmulval 21148 . 2 (𝜑 → ((1r𝐴) · 𝑌) = (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗))))))
13 eqid 2821 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
14 eqid 2821 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
151, 13, 14mat1 21050 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))))
166, 5, 15syl2anc 586 . . . . . . . 8 (𝜑 → (1r𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))))
1716oveqdr 7178 . . . . . . 7 ((𝜑𝑖𝑁) → (𝑖(1r𝐴)𝑗) = (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗))
1817oveq1d 7165 . . . . . 6 ((𝜑𝑖𝑁) → ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗)) = ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)))
1918mpteq2dv 5155 . . . . 5 ((𝜑𝑖𝑁) → (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗))))
2019oveq2d 7166 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)))))
21 eqidd 2822 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))))
22 eqeq12 2835 . . . . . . . . . . 11 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑥 = 𝑦𝑖 = 𝑗))
2322ifbid 4489 . . . . . . . . . 10 ((𝑥 = 𝑖𝑦 = 𝑗) → if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
2423adantl 484 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
25 simpr 487 . . . . . . . . . 10 ((𝜑𝑖𝑁) → 𝑖𝑁)
2625adantr 483 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑖𝑁)
27 simpr 487 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
28 fvexd 6680 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (1r𝑅) ∈ V)
29 fvexd 6680 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (0g𝑅) ∈ V)
3028, 29ifcld 4512 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) ∈ V)
3121, 24, 26, 27, 30ovmpod 7296 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
3231oveq1d 7165 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)) = (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)))
33 iftrue 4473 . . . . . . . . . . . 12 (𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (1r𝑅))
3433adantr 483 . . . . . . . . . . 11 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (1r𝑅))
3534oveq1d 7165 . . . . . . . . . 10 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = ((1r𝑅)(.r𝑅)(𝑌𝑗)))
365adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑖𝑁) → 𝑅 ∈ Ring)
3736adantr 483 . . . . . . . . . . . 12 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
383fvexi 6679 . . . . . . . . . . . . . . . . . 18 𝐵 ∈ V
3938a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ V)
4039, 6elmapd 8414 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 ∈ (𝐵m 𝑁) ↔ 𝑌:𝑁𝐵))
41 ffvelrn 6844 . . . . . . . . . . . . . . . . 17 ((𝑌:𝑁𝐵𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
4241ex 415 . . . . . . . . . . . . . . . 16 (𝑌:𝑁𝐵 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4340, 42syl6bi 255 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 ∈ (𝐵m 𝑁) → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵)))
4411, 43mpd 15 . . . . . . . . . . . . . 14 (𝜑 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4544adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑖𝑁) → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4645imp 409 . . . . . . . . . . . 12 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
473, 4, 13ringlidm 19315 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑌𝑗) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(𝑌𝑗)) = (𝑌𝑗))
4837, 46, 47syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((1r𝑅)(.r𝑅)(𝑌𝑗)) = (𝑌𝑗))
4948adantl 484 . . . . . . . . . 10 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → ((1r𝑅)(.r𝑅)(𝑌𝑗)) = (𝑌𝑗))
50 fveq2 6665 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑌𝑗) = (𝑌𝑖))
5150equcoms 2023 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑌𝑗) = (𝑌𝑖))
5251adantr 483 . . . . . . . . . 10 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (𝑌𝑗) = (𝑌𝑖))
5335, 49, 523eqtrd 2860 . . . . . . . . 9 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = (𝑌𝑖))
54 iftrue 4473 . . . . . . . . . . 11 (𝑗 = 𝑖 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (𝑌𝑖))
5554equcoms 2023 . . . . . . . . . 10 (𝑖 = 𝑗 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (𝑌𝑖))
5655adantr 483 . . . . . . . . 9 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (𝑌𝑖))
5753, 56eqtr4d 2859 . . . . . . . 8 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
58 iffalse 4476 . . . . . . . . . . 11 𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (0g𝑅))
5958oveq1d 7165 . . . . . . . . . 10 𝑖 = 𝑗 → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = ((0g𝑅)(.r𝑅)(𝑌𝑗)))
6059adantr 483 . . . . . . . . 9 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = ((0g𝑅)(.r𝑅)(𝑌𝑗)))
613, 4, 14ringlz 19331 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑌𝑗) ∈ 𝐵) → ((0g𝑅)(.r𝑅)(𝑌𝑗)) = (0g𝑅))
6237, 46, 61syl2anc 586 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅)(.r𝑅)(𝑌𝑗)) = (0g𝑅))
6362adantl 484 . . . . . . . . 9 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → ((0g𝑅)(.r𝑅)(𝑌𝑗)) = (0g𝑅))
64 eqcom 2828 . . . . . . . . . . . 12 (𝑖 = 𝑗𝑗 = 𝑖)
65 iffalse 4476 . . . . . . . . . . . 12 𝑗 = 𝑖 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (0g𝑅))
6664, 65sylnbi 332 . . . . . . . . . . 11 𝑖 = 𝑗 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (0g𝑅))
6766eqcomd 2827 . . . . . . . . . 10 𝑖 = 𝑗 → (0g𝑅) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
6867adantr 483 . . . . . . . . 9 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (0g𝑅) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
6960, 63, 683eqtrd 2860 . . . . . . . 8 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
7057, 69pm2.61ian 810 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
7132, 70eqtrd 2856 . . . . . 6 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
7271mpteq2dva 5154 . . . . 5 ((𝜑𝑖𝑁) → (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅))))
7372oveq2d 7166 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))))
74 ringmnd 19300 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
755, 74syl 17 . . . . . 6 (𝜑𝑅 ∈ Mnd)
7675adantr 483 . . . . 5 ((𝜑𝑖𝑁) → 𝑅 ∈ Mnd)
776adantr 483 . . . . 5 ((𝜑𝑖𝑁) → 𝑁 ∈ Fin)
78 eqid 2821 . . . . 5 (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅))) = (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
79 ffvelrn 6844 . . . . . . . . . 10 ((𝑌:𝑁𝐵𝑖𝑁) → (𝑌𝑖) ∈ 𝐵)
8079, 3eleqtrdi 2923 . . . . . . . . 9 ((𝑌:𝑁𝐵𝑖𝑁) → (𝑌𝑖) ∈ (Base‘𝑅))
8180ex 415 . . . . . . . 8 (𝑌:𝑁𝐵 → (𝑖𝑁 → (𝑌𝑖) ∈ (Base‘𝑅)))
8240, 81syl6bi 255 . . . . . . 7 (𝜑 → (𝑌 ∈ (𝐵m 𝑁) → (𝑖𝑁 → (𝑌𝑖) ∈ (Base‘𝑅))))
8311, 82mpd 15 . . . . . 6 (𝜑 → (𝑖𝑁 → (𝑌𝑖) ∈ (Base‘𝑅)))
8483imp 409 . . . . 5 ((𝜑𝑖𝑁) → (𝑌𝑖) ∈ (Base‘𝑅))
8514, 76, 77, 25, 78, 84gsummptif1n0 19080 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))) = (𝑌𝑖))
8620, 73, 853eqtrd 2860 . . 3 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑌𝑖))
8786mpteq2dva 5154 . 2 (𝜑 → (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗))))) = (𝑖𝑁 ↦ (𝑌𝑖)))
88 ffn 6509 . . . . 5 (𝑌:𝑁𝐵𝑌 Fn 𝑁)
8940, 88syl6bi 255 . . . 4 (𝜑 → (𝑌 ∈ (𝐵m 𝑁) → 𝑌 Fn 𝑁))
9011, 89mpd 15 . . 3 (𝜑𝑌 Fn 𝑁)
91 eqcom 2828 . . . 4 ((𝑖𝑁 ↦ (𝑌𝑖)) = 𝑌𝑌 = (𝑖𝑁 ↦ (𝑌𝑖)))
92 dffn5 6719 . . . 4 (𝑌 Fn 𝑁𝑌 = (𝑖𝑁 ↦ (𝑌𝑖)))
9391, 92bitr4i 280 . . 3 ((𝑖𝑁 ↦ (𝑌𝑖)) = 𝑌𝑌 Fn 𝑁)
9490, 93sylibr 236 . 2 (𝜑 → (𝑖𝑁 ↦ (𝑌𝑖)) = 𝑌)
9512, 87, 943eqtrd 2860 1 (𝜑 → ((1r𝐴) · 𝑌) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3495  ifcif 4467  cop 4567  cmpt 5139   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  cmpo 7152  m cmap 8400  Fincfn 8503  Basecbs 16477  .rcmulr 16560  0gc0g 16707   Σg cgsu 16708  Mndcmnd 17905  1rcur 19245  Ringcrg 19291   Mat cmat 21010   maVecMul cmvmul 21143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-0g 16709  df-gsum 16710  df-prds 16715  df-pws 16717  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-subrg 19527  df-lmod 19630  df-lss 19698  df-sra 19938  df-rgmod 19939  df-dsmm 20870  df-frlm 20885  df-mamu 20989  df-mat 21011  df-mvmul 21144
This theorem is referenced by:  slesolinv  21283  slesolinvbi  21284
  Copyright terms: Public domain W3C validator