Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1odd Structured version   Visualization version   GIF version

Theorem 1odd 42136
Description: 1 is an odd integer. (Contributed by AV, 3-Feb-2020.)
Hypothesis
Ref Expression
oddinmgm.e 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
Assertion
Ref Expression
1odd 1 ∈ 𝑂
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑧)

Proof of Theorem 1odd
StepHypRef Expression
1 1z 11445 . 2 1 ∈ ℤ
2 0z 11426 . . 3 0 ∈ ℤ
3 id 22 . . . 4 (0 ∈ ℤ → 0 ∈ ℤ)
4 oveq2 6698 . . . . . . . 8 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
5 2t0e0 11221 . . . . . . . 8 (2 · 0) = 0
64, 5syl6eq 2701 . . . . . . 7 (𝑥 = 0 → (2 · 𝑥) = 0)
76oveq1d 6705 . . . . . 6 (𝑥 = 0 → ((2 · 𝑥) + 1) = (0 + 1))
87eqeq2d 2661 . . . . 5 (𝑥 = 0 → (1 = ((2 · 𝑥) + 1) ↔ 1 = (0 + 1)))
98adantl 481 . . . 4 ((0 ∈ ℤ ∧ 𝑥 = 0) → (1 = ((2 · 𝑥) + 1) ↔ 1 = (0 + 1)))
10 1e0p1 11590 . . . . 5 1 = (0 + 1)
1110a1i 11 . . . 4 (0 ∈ ℤ → 1 = (0 + 1))
123, 9, 11rspcedvd 3348 . . 3 (0 ∈ ℤ → ∃𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1))
132, 12ax-mp 5 . 2 𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1)
14 eqeq1 2655 . . . 4 (𝑧 = 1 → (𝑧 = ((2 · 𝑥) + 1) ↔ 1 = ((2 · 𝑥) + 1)))
1514rexbidv 3081 . . 3 (𝑧 = 1 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1)))
16 oddinmgm.e . . 3 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
1715, 16elrab2 3399 . 2 (1 ∈ 𝑂 ↔ (1 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1)))
181, 13, 17mpbir2an 975 1 1 ∈ 𝑂
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1523  wcel 2030  wrex 2942  {crab 2945  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  2c2 11108  cz 11415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-z 11416
This theorem is referenced by:  oddinmgm  42140
  Copyright terms: Public domain W3C validator