![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1st2ndb | Structured version Visualization version GIF version |
Description: Reconstruction of an ordered pair in terms of its components. (Contributed by NM, 25-Feb-2014.) |
Ref | Expression |
---|---|
1st2ndb | ⊢ (𝐴 ∈ (V × V) ↔ 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 7249 | . 2 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | id 22 | . . 3 ⊢ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
3 | fvex 6239 | . . . 4 ⊢ (1st ‘𝐴) ∈ V | |
4 | fvex 6239 | . . . 4 ⊢ (2nd ‘𝐴) ∈ V | |
5 | 3, 4 | opelvv 5200 | . . 3 ⊢ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ (V × V) |
6 | 2, 5 | syl6eqel 2738 | . 2 ⊢ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 → 𝐴 ∈ (V × V)) |
7 | 1, 6 | impbii 199 | 1 ⊢ (𝐴 ∈ (V × V) ↔ 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 ∈ wcel 2030 Vcvv 3231 〈cop 4216 × cxp 5141 ‘cfv 5926 1st c1st 7208 2nd c2nd 7209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fv 5934 df-1st 7210 df-2nd 7211 |
This theorem is referenced by: wlkcpr 26580 wlkeq 26585 opfv 29576 1stpreimas 29611 ovolval2lem 41178 |
Copyright terms: Public domain | W3C validator |