MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2val Structured version   Visualization version   GIF version

Theorem 1st2val 7719
Description: Value of an alternate definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 30-Dec-2014.)
Assertion
Ref Expression
1st2val ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem 1st2val
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5628 . . 3 (𝐴 ∈ (V × V) ↔ ∃𝑤𝑣 𝐴 = ⟨𝑤, 𝑣⟩)
2 fveq2 6672 . . . . . 6 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘⟨𝑤, 𝑣⟩))
3 df-ov 7161 . . . . . . 7 (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}𝑣) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘⟨𝑤, 𝑣⟩)
4 simpl 485 . . . . . . . . 9 ((𝑥 = 𝑤𝑦 = 𝑣) → 𝑥 = 𝑤)
5 mpov 7266 . . . . . . . . . 10 (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝑥) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}
65eqcomi 2832 . . . . . . . . 9 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝑥)
7 vex 3499 . . . . . . . . 9 𝑤 ∈ V
84, 6, 7ovmpoa 7307 . . . . . . . 8 ((𝑤 ∈ V ∧ 𝑣 ∈ V) → (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}𝑣) = 𝑤)
98el2v 3503 . . . . . . 7 (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}𝑣) = 𝑤
103, 9eqtr3i 2848 . . . . . 6 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘⟨𝑤, 𝑣⟩) = 𝑤
112, 10syl6eq 2874 . . . . 5 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = 𝑤)
12 vex 3499 . . . . . 6 𝑣 ∈ V
137, 12op1std 7701 . . . . 5 (𝐴 = ⟨𝑤, 𝑣⟩ → (1st𝐴) = 𝑤)
1411, 13eqtr4d 2861 . . . 4 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴))
1514exlimivv 1933 . . 3 (∃𝑤𝑣 𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴))
161, 15sylbi 219 . 2 (𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴))
17 vex 3499 . . . . . . . . . 10 𝑥 ∈ V
18 vex 3499 . . . . . . . . . 10 𝑦 ∈ V
1917, 18pm3.2i 473 . . . . . . . . 9 (𝑥 ∈ V ∧ 𝑦 ∈ V)
20 ax6ev 1972 . . . . . . . . 9 𝑧 𝑧 = 𝑥
2119, 202th 266 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V) ↔ ∃𝑧 𝑧 = 𝑥)
2221opabbii 5135 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 𝑧 = 𝑥}
23 df-xp 5563 . . . . . . 7 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
24 dmoprab 7257 . . . . . . 7 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 𝑧 = 𝑥}
2522, 23, 243eqtr4ri 2857 . . . . . 6 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (V × V)
2625eleq2i 2906 . . . . 5 (𝐴 ∈ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} ↔ 𝐴 ∈ (V × V))
27 ndmfv 6702 . . . . 5 𝐴 ∈ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = ∅)
2826, 27sylnbir 333 . . . 4 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = ∅)
29 dmsnn0 6066 . . . . . . . 8 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
3029biimpri 230 . . . . . . 7 (dom {𝐴} ≠ ∅ → 𝐴 ∈ (V × V))
3130necon1bi 3046 . . . . . 6 𝐴 ∈ (V × V) → dom {𝐴} = ∅)
3231unieqd 4854 . . . . 5 𝐴 ∈ (V × V) → dom {𝐴} = ∅)
33 uni0 4868 . . . . 5 ∅ = ∅
3432, 33syl6eq 2874 . . . 4 𝐴 ∈ (V × V) → dom {𝐴} = ∅)
3528, 34eqtr4d 2861 . . 3 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = dom {𝐴})
36 1stval 7693 . . 3 (1st𝐴) = dom {𝐴}
3735, 36syl6eqr 2876 . 2 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴))
3816, 37pm2.61i 184 1 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3018  Vcvv 3496  c0 4293  {csn 4569  cop 4575   cuni 4840  {copab 5130   × cxp 5555  dom cdm 5557  cfv 6357  (class class class)co 7158  {coprab 7159  cmpo 7160  1st c1st 7689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator