MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stccn Structured version   Visualization version   GIF version

Theorem 1stccn 21314
Description: A mapping 𝑋𝑌, where 𝑋 is first-countable, is continuous iff it is sequentially continuous, meaning that for any sequence 𝑓(𝑛) converging to 𝑥, its image under 𝐹 converges to 𝐹(𝑥). (Contributed by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
1stccnp.1 (𝜑𝐽 ∈ 1st𝜔)
1stccnp.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
1stccnp.3 (𝜑𝐾 ∈ (TopOn‘𝑌))
1stccn.7 (𝜑𝐹:𝑋𝑌)
Assertion
Ref Expression
1stccn (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝑓,𝐹   𝑓,𝐽,𝑥   𝜑,𝑓,𝑥   𝑓,𝐾,𝑥   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥

Proof of Theorem 1stccn
StepHypRef Expression
1 1stccnp.2 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 1stccnp.3 . . . 4 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 cncnp 21132 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
41, 2, 3syl2anc 694 . . 3 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
5 1stccn.7 . . . 4 (𝜑𝐹:𝑋𝑌)
65biantrurd 528 . . 3 (𝜑 → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
74, 6bitr4d 271 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
8 1stccnp.1 . . . . . 6 (𝜑𝐽 ∈ 1st𝜔)
98adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐽 ∈ 1st𝜔)
101adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
112adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
12 simpr 476 . . . . 5 ((𝜑𝑥𝑋) → 𝑥𝑋)
139, 10, 11, 121stccnp 21313 . . . 4 ((𝜑𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
145adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐹:𝑋𝑌)
1514biantrurd 528 . . . 4 ((𝜑𝑥𝑋) → (∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
1613, 15bitr4d 271 . . 3 ((𝜑𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
1716ralbidva 3014 . 2 (𝜑 → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥𝑋𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
18 ralcom4 3255 . . 3 (∀𝑥𝑋𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑓𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))
19 impexp 461 . . . . . . 7 (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
2019ralbii 3009 . . . . . 6 (∀𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑥𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
21 r19.21v 2989 . . . . . 6 (∀𝑥𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
2220, 21bitri 264 . . . . 5 (∀𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
23 df-ral 2946 . . . . . . 7 (∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑥(𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
24 lmcl 21149 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
251, 24sylan 487 . . . . . . . . . . . 12 ((𝜑𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
2625ex 449 . . . . . . . . . . 11 (𝜑 → (𝑓(⇝𝑡𝐽)𝑥𝑥𝑋))
2726pm4.71rd 668 . . . . . . . . . 10 (𝜑 → (𝑓(⇝𝑡𝐽)𝑥 ↔ (𝑥𝑋𝑓(⇝𝑡𝐽)𝑥)))
2827imbi1d 330 . . . . . . . . 9 (𝜑 → ((𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ((𝑥𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
29 impexp 461 . . . . . . . . 9 (((𝑥𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
3028, 29syl6rbb 277 . . . . . . . 8 (𝜑 → ((𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
3130albidv 1889 . . . . . . 7 (𝜑 → (∀𝑥(𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
3223, 31syl5bb 272 . . . . . 6 (𝜑 → (∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
3332imbi2d 329 . . . . 5 (𝜑 → ((𝑓:ℕ⟶𝑋 → ∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
3422, 33syl5bb 272 . . . 4 (𝜑 → (∀𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
3534albidv 1889 . . 3 (𝜑 → (∀𝑓𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
3618, 35syl5bb 272 . 2 (𝜑 → (∀𝑥𝑋𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
377, 17, 363bitrd 294 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1521  wcel 2030  wral 2941   class class class wbr 4685  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  cn 11058  TopOnctopon 20763   Cn ccn 21076   CnP ccnp 21077  𝑡clm 21078  1st𝜔c1stc 21288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-topgen 16151  df-top 20747  df-topon 20764  df-cld 20871  df-ntr 20872  df-cls 20873  df-cn 21079  df-cnp 21080  df-lm 21081  df-1stc 21290
This theorem is referenced by:  metcn4  23155
  Copyright terms: Public domain W3C validator