Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stccn Structured version   Visualization version   GIF version

Theorem 1stccn 21314
 Description: A mapping 𝑋⟶𝑌, where 𝑋 is first-countable, is continuous iff it is sequentially continuous, meaning that for any sequence 𝑓(𝑛) converging to 𝑥, its image under 𝐹 converges to 𝐹(𝑥). (Contributed by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
1stccnp.1 (𝜑𝐽 ∈ 1st𝜔)
1stccnp.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
1stccnp.3 (𝜑𝐾 ∈ (TopOn‘𝑌))
1stccn.7 (𝜑𝐹:𝑋𝑌)
Assertion
Ref Expression
1stccn (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝑓,𝐹   𝑓,𝐽,𝑥   𝜑,𝑓,𝑥   𝑓,𝐾,𝑥   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥

Proof of Theorem 1stccn
StepHypRef Expression
1 1stccnp.2 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 1stccnp.3 . . . 4 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 cncnp 21132 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
41, 2, 3syl2anc 694 . . 3 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
5 1stccn.7 . . . 4 (𝜑𝐹:𝑋𝑌)
65biantrurd 528 . . 3 (𝜑 → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
74, 6bitr4d 271 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
8 1stccnp.1 . . . . . 6 (𝜑𝐽 ∈ 1st𝜔)
98adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐽 ∈ 1st𝜔)
101adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
112adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
12 simpr 476 . . . . 5 ((𝜑𝑥𝑋) → 𝑥𝑋)
139, 10, 11, 121stccnp 21313 . . . 4 ((𝜑𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
145adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐹:𝑋𝑌)
1514biantrurd 528 . . . 4 ((𝜑𝑥𝑋) → (∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
1613, 15bitr4d 271 . . 3 ((𝜑𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
1716ralbidva 3014 . 2 (𝜑 → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥𝑋𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
18 ralcom4 3255 . . 3 (∀𝑥𝑋𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑓𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))
19 impexp 461 . . . . . . 7 (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
2019ralbii 3009 . . . . . 6 (∀𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑥𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
21 r19.21v 2989 . . . . . 6 (∀𝑥𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
2220, 21bitri 264 . . . . 5 (∀𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
23 df-ral 2946 . . . . . . 7 (∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑥(𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
24 lmcl 21149 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
251, 24sylan 487 . . . . . . . . . . . 12 ((𝜑𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
2625ex 449 . . . . . . . . . . 11 (𝜑 → (𝑓(⇝𝑡𝐽)𝑥𝑥𝑋))
2726pm4.71rd 668 . . . . . . . . . 10 (𝜑 → (𝑓(⇝𝑡𝐽)𝑥 ↔ (𝑥𝑋𝑓(⇝𝑡𝐽)𝑥)))
2827imbi1d 330 . . . . . . . . 9 (𝜑 → ((𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ((𝑥𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
29 impexp 461 . . . . . . . . 9 (((𝑥𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
3028, 29syl6rbb 277 . . . . . . . 8 (𝜑 → ((𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
3130albidv 1889 . . . . . . 7 (𝜑 → (∀𝑥(𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
3223, 31syl5bb 272 . . . . . 6 (𝜑 → (∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
3332imbi2d 329 . . . . 5 (𝜑 → ((𝑓:ℕ⟶𝑋 → ∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
3422, 33syl5bb 272 . . . 4 (𝜑 → (∀𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
3534albidv 1889 . . 3 (𝜑 → (∀𝑓𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
3618, 35syl5bb 272 . 2 (𝜑 → (∀𝑥𝑋𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
377, 17, 363bitrd 294 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1521   ∈ wcel 2030  ∀wral 2941   class class class wbr 4685   ∘ ccom 5147  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  ℕcn 11058  TopOnctopon 20763   Cn ccn 21076   CnP ccnp 21077  ⇝𝑡clm 21078  1st𝜔c1stc 21288 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-topgen 16151  df-top 20747  df-topon 20764  df-cld 20871  df-ntr 20872  df-cls 20873  df-cn 21079  df-cnp 21080  df-lm 21081  df-1stc 21290 This theorem is referenced by:  metcn4  23155
 Copyright terms: Public domain W3C validator