MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stckgen Structured version   Visualization version   GIF version

Theorem 1stckgen 21262
Description: A first-countable space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
1stckgen (𝐽 ∈ 1st𝜔 → 𝐽 ∈ ran 𝑘Gen)

Proof of Theorem 1stckgen
Dummy variables 𝑘 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stctop 21151 . 2 (𝐽 ∈ 1st𝜔 → 𝐽 ∈ Top)
2 difss 3720 . . . . . . . . . 10 ( 𝐽𝑥) ⊆ 𝐽
3 eqid 2626 . . . . . . . . . . 11 𝐽 = 𝐽
431stcelcls 21169 . . . . . . . . . 10 ((𝐽 ∈ 1st𝜔 ∧ ( 𝐽𝑥) ⊆ 𝐽) → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)))
52, 4mpan2 706 . . . . . . . . 9 (𝐽 ∈ 1st𝜔 → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)))
65adantr 481 . . . . . . . 8 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)))
71adantr 481 . . . . . . . . . . . . . 14 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝐽 ∈ Top)
87adantr 481 . . . . . . . . . . . . 13 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝐽 ∈ Top)
93toptopon 20643 . . . . . . . . . . . . 13 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
108, 9sylib 208 . . . . . . . . . . . 12 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝐽 ∈ (TopOn‘ 𝐽))
11 simprr 795 . . . . . . . . . . . 12 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓(⇝𝑡𝐽)𝑦)
12 lmcl 21006 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑓(⇝𝑡𝐽)𝑦) → 𝑦 𝐽)
1310, 11, 12syl2anc 692 . . . . . . . . . . 11 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 𝐽)
14 nnuz 11667 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
15 vex 3194 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
1615rnex 7048 . . . . . . . . . . . . . . . 16 ran 𝑓 ∈ V
17 snex 4874 . . . . . . . . . . . . . . . 16 {𝑦} ∈ V
1816, 17unex 6910 . . . . . . . . . . . . . . 15 (ran 𝑓 ∪ {𝑦}) ∈ V
19 resttop 20869 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ (ran 𝑓 ∪ {𝑦}) ∈ V) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top)
208, 18, 19sylancl 693 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top)
21 eqid 2626 . . . . . . . . . . . . . . 15 (𝐽t (ran 𝑓 ∪ {𝑦})) = (𝐽t (ran 𝑓 ∪ {𝑦}))
2221toptopon 20643 . . . . . . . . . . . . . 14 ((𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top ↔ (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ (TopOn‘ (𝐽t (ran 𝑓 ∪ {𝑦}))))
2320, 22sylib 208 . . . . . . . . . . . . 13 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ (TopOn‘ (𝐽t (ran 𝑓 ∪ {𝑦}))))
24 1zzd 11353 . . . . . . . . . . . . 13 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 1 ∈ ℤ)
25 eqid 2626 . . . . . . . . . . . . . . 15 (𝐽t (ran 𝑓 ∪ {𝑦})) = (𝐽t (ran 𝑓 ∪ {𝑦}))
2618a1i 11 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) ∈ V)
27 ssun2 3760 . . . . . . . . . . . . . . . . 17 {𝑦} ⊆ (ran 𝑓 ∪ {𝑦})
28 vex 3194 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
2928snss 4291 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ran 𝑓 ∪ {𝑦}) ↔ {𝑦} ⊆ (ran 𝑓 ∪ {𝑦}))
3027, 29mpbir 221 . . . . . . . . . . . . . . . 16 𝑦 ∈ (ran 𝑓 ∪ {𝑦})
3130a1i 11 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 ∈ (ran 𝑓 ∪ {𝑦}))
32 ffn 6004 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶( 𝐽𝑥) → 𝑓 Fn ℕ)
3332ad2antrl 763 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓 Fn ℕ)
34 dffn3 6013 . . . . . . . . . . . . . . . . 17 (𝑓 Fn ℕ ↔ 𝑓:ℕ⟶ran 𝑓)
3533, 34sylib 208 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶ran 𝑓)
36 ssun1 3759 . . . . . . . . . . . . . . . 16 ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑦})
37 fss 6015 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶ran 𝑓 ∧ ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑦})) → 𝑓:ℕ⟶(ran 𝑓 ∪ {𝑦}))
3835, 36, 37sylancl 693 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶(ran 𝑓 ∪ {𝑦}))
3925, 14, 26, 8, 31, 24, 38lmss 21007 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝑓(⇝𝑡𝐽)𝑦𝑓(⇝𝑡‘(𝐽t (ran 𝑓 ∪ {𝑦})))𝑦))
4011, 39mpbid 222 . . . . . . . . . . . . 13 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓(⇝𝑡‘(𝐽t (ran 𝑓 ∪ {𝑦})))𝑦)
4138ffvelrnda 6316 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ (ran 𝑓 ∪ {𝑦}))
42 simprl 793 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶( 𝐽𝑥))
4342ffvelrnda 6316 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ( 𝐽𝑥))
4443eldifbd 3573 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → ¬ (𝑓𝑘) ∈ 𝑥)
4541, 44eldifd 3571 . . . . . . . . . . . . 13 ((((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥))
46 difin 3844 . . . . . . . . . . . . . . 15 ((ran 𝑓 ∪ {𝑦}) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) = ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥)
47 frn 6012 . . . . . . . . . . . . . . . . . . . 20 (𝑓:ℕ⟶( 𝐽𝑥) → ran 𝑓 ⊆ ( 𝐽𝑥))
4847ad2antrl 763 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ran 𝑓 ⊆ ( 𝐽𝑥))
4948difss2d 3723 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ran 𝑓 𝐽)
5013snssd 4314 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → {𝑦} ⊆ 𝐽)
5149, 50unssd 3772 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) ⊆ 𝐽)
523restuni 20871 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ (ran 𝑓 ∪ {𝑦}) ⊆ 𝐽) → (ran 𝑓 ∪ {𝑦}) = (𝐽t (ran 𝑓 ∪ {𝑦})))
538, 51, 52syl2anc 692 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) = (𝐽t (ran 𝑓 ∪ {𝑦})))
5453difeq1d 3710 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) = ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)))
5546, 54syl5eqr 2674 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) = ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)))
56 incom 3788 . . . . . . . . . . . . . . . 16 ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) = (𝑥 ∩ (ran 𝑓 ∪ {𝑦}))
57 simplr 791 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑥 ∈ (𝑘Gen‘𝐽))
58 fss 6015 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶( 𝐽𝑥) ∧ ( 𝐽𝑥) ⊆ 𝐽) → 𝑓:ℕ⟶ 𝐽)
5942, 2, 58sylancl 693 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶ 𝐽)
6010, 59, 111stckgenlem 21261 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Comp)
61 kgeni 21245 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Comp) → (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) ∈ (𝐽t (ran 𝑓 ∪ {𝑦})))
6257, 60, 61syl2anc 692 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) ∈ (𝐽t (ran 𝑓 ∪ {𝑦})))
6356, 62syl5eqel 2708 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) ∈ (𝐽t (ran 𝑓 ∪ {𝑦})))
6421opncld 20742 . . . . . . . . . . . . . . 15 (((𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top ∧ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) ∈ (𝐽t (ran 𝑓 ∪ {𝑦}))) → ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) ∈ (Clsd‘(𝐽t (ran 𝑓 ∪ {𝑦}))))
6520, 63, 64syl2anc 692 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) ∈ (Clsd‘(𝐽t (ran 𝑓 ∪ {𝑦}))))
6655, 65eqeltrd 2704 . . . . . . . . . . . . 13 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) ∈ (Clsd‘(𝐽t (ran 𝑓 ∪ {𝑦}))))
6714, 23, 24, 40, 45, 66lmcld 21012 . . . . . . . . . . . 12 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 ∈ ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥))
6867eldifbd 3573 . . . . . . . . . . 11 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ¬ 𝑦𝑥)
6913, 68eldifd 3571 . . . . . . . . . 10 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 ∈ ( 𝐽𝑥))
7069ex 450 . . . . . . . . 9 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → ((𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦) → 𝑦 ∈ ( 𝐽𝑥)))
7170exlimdv 1863 . . . . . . . 8 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦) → 𝑦 ∈ ( 𝐽𝑥)))
726, 71sylbid 230 . . . . . . 7 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) → 𝑦 ∈ ( 𝐽𝑥)))
7372ssrdv 3594 . . . . . 6 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → ((cls‘𝐽)‘( 𝐽𝑥)) ⊆ ( 𝐽𝑥))
743iscld4 20774 . . . . . . 7 ((𝐽 ∈ Top ∧ ( 𝐽𝑥) ⊆ 𝐽) → (( 𝐽𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘( 𝐽𝑥)) ⊆ ( 𝐽𝑥)))
757, 2, 74sylancl 693 . . . . . 6 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (( 𝐽𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘( 𝐽𝑥)) ⊆ ( 𝐽𝑥)))
7673, 75mpbird 247 . . . . 5 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
77 elssuni 4438 . . . . . . . 8 (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 (𝑘Gen‘𝐽))
7877adantl 482 . . . . . . 7 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 (𝑘Gen‘𝐽))
793kgenuni 21247 . . . . . . . 8 (𝐽 ∈ Top → 𝐽 = (𝑘Gen‘𝐽))
807, 79syl 17 . . . . . . 7 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝐽 = (𝑘Gen‘𝐽))
8178, 80sseqtr4d 3626 . . . . . 6 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 𝐽)
823isopn2 20741 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → (𝑥𝐽 ↔ ( 𝐽𝑥) ∈ (Clsd‘𝐽)))
837, 81, 82syl2anc 692 . . . . 5 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑥𝐽 ↔ ( 𝐽𝑥) ∈ (Clsd‘𝐽)))
8476, 83mpbird 247 . . . 4 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥𝐽)
8584ex 450 . . 3 (𝐽 ∈ 1st𝜔 → (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽))
8685ssrdv 3594 . 2 (𝐽 ∈ 1st𝜔 → (𝑘Gen‘𝐽) ⊆ 𝐽)
87 iskgen2 21256 . 2 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))
881, 86, 87sylanbrc 697 1 (𝐽 ∈ 1st𝜔 → 𝐽 ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1992  Vcvv 3191  cdif 3557  cun 3558  cin 3559  wss 3560  {csn 4153   cuni 4407   class class class wbr 4618  ran crn 5080   Fn wfn 5845  wf 5846  cfv 5850  (class class class)co 6605  1c1 9882  cn 10965  t crest 15997  Topctop 20612  TopOnctopon 20613  Clsdccld 20725  clsccl 20727  𝑡clm 20935  Compccmp 21094  1st𝜔c1stc 21145  𝑘Genckgen 21241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cc 9202  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fi 8262  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-rest 15999  df-topgen 16020  df-top 20616  df-bases 20617  df-topon 20618  df-cld 20728  df-ntr 20729  df-cls 20730  df-lm 20938  df-cmp 21095  df-1stc 21147  df-kgen 21242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator